(1)先根据等比数列通项公式和a1=3,a4=81求得公比q,进而可求得an,根据b2=a1,b5=a2,求得b2和b5,进而求得公差d,根据等差数列的通项公式求得bn.
(2)把an代入bn=log3an求得bn,进而根据裂项法求得数列的前n项和Tn.
【解析】
(Ⅰ)在等比数列{an}中,a1=3,a4=81.
所以,由a4=a1q3得3q3=81,
解得q=3.
因此,an=3×3n-1=3n.在等差数列{bn}中,
根据题意,b2=a1=3,b5=a2=9,,可得,
d==2
所以,bn=b2+(n-2)d=2n-1
(Ⅱ)若数列{bn}满足bn=log3an,
则bn=log33n=n,
因此有++…+=(1-)+(-)+…+(-)=