考点分析:
相关试题推荐
已知定义在R上的函数f(x) 满足条件:(1)f(x)+f(-x)=2;(2)对非零实数x,都有2f(x)+f(
)=2x+
+3.
(1)求函数f(x)的解析式;
(2)设函数g(x)=
(x≥0)直线 y=
n-x分别与函数f(x) 的反函数 交于A,B两点
(其中n∈N*),设 a
n=|A
nB
n|,s
n为数列a
n 的前n项和.求证:当n≥2 时,总有 S
n2>2(
)成立.
查看答案
已知点M(-2,0),N(2,0),动点P满足条件
.记动点P的轨迹为W.
(Ⅰ)求W的方程;
(Ⅱ)若A,B是W上的不同两点,O是坐标原点,求
的最小值.
查看答案
设函数
(x>0且x≠1)
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)已知
对任意x∈(0,1)成立,求实数a的取值范围.
查看答案
如图,已知正三棱柱ABC-A
1B
1C
1的底面正三角形的边长是2,D是CC
1的中点,直线AD与侧面BB
1C
1C所成的角是45°.
(1)求二面角A-BD-C的大小;
(2)求点C到平面ABD的距离.
查看答案
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为
,且各局胜负相互独立.求:
(Ⅰ)打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数ξ的分别列与期望Eξ.
查看答案