满分5 > 高中数学试题 >

如图,α⊥β,α∩β=l,A∈α,B∈β,点A在直线l上的射影为A1,点B在l的...

如图,α⊥β,α∩β=l,A∈α,B∈β,点A在直线l上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=manfen5.com 满分网,求:
(Ⅰ)直线AB分别与平面α,β所成角的大小;
(Ⅱ)二面角A1-AB-B1的大小.

manfen5.com 满分网
(I)因为α⊥β,α∩β=l,A∈α,B∈β,点A在直线l上的射影为A1,点B在l的射利用直线与平面所成角的定义找到该斜线在平面内的射影即可以求解影为B1,利用直线与平面所成角的定义找到该斜线在平面内的射影即可以求解; (II)因为BB1⊥α,利用线面垂直的判定定理可以得到平面ABB1⊥α,再利用三垂线定理根据二面角的定义求出二面角的平面角的平面角,在放到三角形中解出即可. 【解析】 (Ⅰ)如图,连接A1B,AB1,∵α⊥β,α∩β=l,AA1⊥l,BB1⊥l, ∴AA1⊥β,BB1⊥α.则∠BAB1,∠ABA1分别是AB与α和β所成的角. Rt△BB1A中,BB1=,AB=2, ∴sin∠BAB1==. ∴∠BAB1=45°. Rt△AA1B中,AA1=1,AB=2,sin∠ABA1==, ∴∠ABA1=30°. 故AB与平面α,β所成的角分别是45°,30°. (Ⅱ)∵BB1⊥α,∴平面ABB1⊥α. 在平面α内过A1作A1E⊥AB1交AB1于E,则A1E⊥平面AB1B.过E作EF⊥AB交AB于F,连接A1F,则由三垂线定理得A1F⊥AB, ∴∠A1FE就是所求二面角的平面角. 在Rt△ABB1中,∠BAB1=45°, ∴AB1=B1B=. ∴Rt△AA1B中,A1B===. 由AA1•A1B=A1F•AB得A1F===, ∴在Rt△A1EF中,sin∠A1FE==, ∴二面角A1-AB-B1的大小为arcsin.
复制答案
考点分析:
相关试题推荐
7名身高各不相同的学生按下列要求从左到右站成一排,求出各条件下的站法种数.(要求写出必要的解答过程,最后结果用数字表示)
(1)甲不能站在两端;
(2)甲不能站在左端,乙不能站在右端;
(3)甲乙要相邻,且丙丁要隔开;
(4)从正中间到两边都按从高到矮的顺序站立.
查看答案
已知二面角α-l-β为60°,动点P、Q分别在面α、β内,P到β的距离为manfen5.com 满分网,Q到α的距离为manfen5.com 满分网,则P、Q两点之间距离的最小值为(
manfen5.com 满分网
A.1
B.2
C.manfen5.com 满分网
D.4
查看答案
若正四棱锥的全面积是底面积的3倍,则侧面与底面所成的角为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网π
查看答案
下列所有命题:
(1)过空间内任意一点,可以作一个和异面直线a,b都平行的平面;
(2)如果a,b是异面直线,过直线a有且只有一个平面和b平行;
(3)有两个侧面是矩形的平行六面体是直四棱柱;
(4)底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
(5)一个正棱锥的各个侧面都是正三角形,则它只能是正三棱锥、正四棱锥或正五棱锥.
其中真命题的序号是    .(填上所有真命题的序号) 查看答案
已知球面上有三点A,B,C且AB=6cm,BC=8cm,CA=10cm,若球心到平面ABC距离为7cm,则此球的表面积为    cm3查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.