满分5 > 高中数学试题 >

先后2次抛掷一枚骰子,将得到的点数分别记为a,b. (1)求直线ax+by+5=...

先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
本题考查的知识点是古典概型,我们要列出一枚骰子连掷两次先后出现的点数所有的情况个数 (1)再根求出满足条件直线ax+by+5=0与圆x2+y2=1的事件个数,然后代入古典概型公式即可求解; (2)再根求出满足条件a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的事件个数,然后代入古典概型公式即可求解. 【解析】 (1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36. ∵直线ax+by+c=0与圆x2+y2=1相切的充要条件是 即:a2+b2=25,由于a,b∈{1,2,3,4,5,6} ∴满足条件的情况只有a=3,b=4,c=5;或a=4,b=3,c=5两种情况. ∴直线ax+by+c=0与圆x2+y2=1相切的概率是 (2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36. ∵三角形的一边长为5 ∴当a=1时,b=5,(1,5,5)1种 当a=2时,b=5,(2,5,5)1种 当a=3时,b=3,5,(3,3,5),(3,5,5)2种 当a=4时,b=4,5,(4,4,5),(4,5,5)2种 当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5), (5,4,5),(5,5,5),(5,6,5)6种 当a=6时,b=5,6,(6,5,5),(6,6,5)2种 故满足条件的不同情况共有14种 故三条线段能围成不同的等腰三角形的概率为.
复制答案
考点分析:
相关试题推荐
某中学举行了一次“上海世博会知识竞赛”,从全校参加竞赛的学生的试卷中,随机抽取了一个样本,考察竞赛的成绩分布(得分均为整数,满分100分),将样本分成5组,绘成频率分布直方图,图中从左到右各小组的长方形的高之比为1:3:6:4:2,最右边一组的频数是6.请结合直方图提供的信息,解答下列问题:
(Ⅰ)样本容量是多少?
(Ⅱ)成绩落在那个范围内的人数最多?并求该小组的频数、频率;
(Ⅲ)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.

manfen5.com 满分网 查看答案
阅读流程图,若记y=f(x).
(Ⅰ) 写出y=f(x)的解析式,并求函数的值域;
(Ⅱ)若x满足f(x)<0 且f(f(x))=1,求x

manfen5.com 满分网 查看答案
如图A,B是单位圆O上的点,且A,B分别在第一,二象限.C是圆与x轴正半轴的交点,△AOB为正三角形.若A点的坐标为(manfen5.com 满分网manfen5.com 满分网).记∠COA=α.
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)求cos∠COB的值.

manfen5.com 满分网 查看答案
对于函数f(x)=sin(2x+manfen5.com 满分网),下列命题:
①函数图象关于直线x=-manfen5.com 满分网对称;    
②函数图象关于点(manfen5.com 满分网,0)对称;
③函数图象可看作是把y=sin2x的图象向左平移个manfen5.com 满分网单位而得到;
④函数图象可看作是把y=sin(x+manfen5.com 满分网)的图象上所有点的横坐标缩短到原来的manfen5.com 满分网倍(纵坐标不变)而得到;其中正确的命题是    查看答案
在区间[-1,1]上随机取一个数x,则cosmanfen5.com 满分网的值介于0到manfen5.com 满分网之间的概率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.