作PQ⊥AD,作QR⊥D1A1,PR即为点P到直线A1D1的距离,由勾股定理得 PR2-PQ2=RQ2=1,又已知PR2-PM2=1,PM=PQ,即P到点M的距离等于P到AD的距离.
【解析】
如图所示:正方体ABCD-A1B1C1D1 中,作PQ⊥AD,Q为垂足,则PQ⊥面ADD1A1,过点Q作QR⊥D1A1,
则D1A1⊥面PQR,PR即为点P到直线A1D1的距离,由题意可得 PR2-PQ2=RQ2=1.
又已知 PR2-PM2=1,∴PM=PQ,即P到点M的距离等于P到AD的距离,根据抛物线的定义可得,点P的轨迹是抛物线,
故选 B.