满分5 > 高中数学试题 >

已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y)...

已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2.
先根据f(xy)=f(x)+f(y),f(3)=1,通过取特殊值求出f(9)=2,将f(x)+f(x-8)≤2,化成f[x(x-8)]≤f(9).依据函数y=f(x)在R上单调性化掉符号:“f”,将问题转化为关于x的整式不等式,即可求得x的取值范围. 【解析】 根据题意,由f(3)=1, 得f(9)=f(3)+f(3)=2. 又f(x)+f(x-8)=f[x(x-8)], 故f[x(x-8)]≤f(9). ∵f(x)在定义域(0,+∞)上为增函数, ∴解得8<x≤9. ∴原不等式的解集为{x|8<x≤9}.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.
查看答案
若集合A={x|x2-2x-8<0},B={x|x-m<0}.
(1)若m=3,全集U=A∪B,试求A∩(CuB);
(2)若A∩B=Φ,求实数m的取值范围;
(3)若A∩B=A,求实数m的取值范围.
查看答案
已知命题p:x2-8x-20≤0,命题q:x2-2x+1-m2≤0(m>0),且¬p是¬q的必要不充分条件,求实数m的取值范围.
查看答案
已知f(x)=x2-2x+1,g(x)是一次函数,且f[g(x)]=4x2,求g(x)的解析式.
查看答案
已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则m的取值范围是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.