满分5 > 高中数学试题 >

已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的图象与x轴交于...

已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的图象与x轴交于A,B,C三点.若点B的坐标为(2,0),且函数f(x)在区间[-1,0]和[4,5]上有相同的单调性,在区间[0,2]和[4,5]上有相反的单调性.
(1)求c的值;
(2)求manfen5.com 满分网的取值范围;
(3)求|AC|的最大值和最小值.
(1)利用函数f(x)的单调区间判断出x=0是函数的极值点,利用函数在极值点处的导数值为0,列出方程求出c的值. (2)将c的值代入导函数,令导函数为0求出方程的两个根即两个极值点,据函数的单调性,判断出根与区间端点的关系,列出不等式组求出的范围. (3)设出f(x)的三个零点,写出f(x)的利用三个根不是的解析式,将x=2代入,利用韦达定理求出A,C的距离,据(2)求出|AC|的最值. 【解析】 (1)由条件可知f(x)在区间[-1,0]和[0,2]上有相反的单调性, ∴x=0是f(x)的一个极值点, ∴f′(0)=0 而f′(x)=3ax2+2bx+c, 故c=0. (2)令f′(x)=0,则3ax2+2bx=0, 解得. 又f(x)在区间[0,2]和[4,5]上有相反的单调性, 得解得. (3)设A(α,0),C(β,0), 则由题意可令f(x)=a(x-α)(x-2)(x-β)=a[x3-(2+α+β)x2+(2α+2β+αβ)x-2αβ]…(2分) 则,解得 又∵函数f(x)的图象交x轴于B(2,0), ∴f(2)=0即8a+4b+d=0 ∴d=-4(b+2a), 从而= ∵ ∴当时,|AC|max=;当时,|AC|min=3.
复制答案
考点分析:
相关试题推荐
已知抛物线C1:y2=4px(p>0),焦点为F2,其准线与x轴交于点F1;椭圆C2:分别以F1、F2为左、右焦点,其离心率manfen5.com 满分网;且抛物线C1和椭圆C2的一个交点记为M.
(1)当p=1时,求椭圆C2的标准方程;
(2)在(1)的条件下,若直线l经过椭圆C2的右焦点F2,且与抛物线C1相交于A,B两点,若弦长|AB|等于△MF1F2的周长,求直线l的方程.
查看答案
已知定义在区间(0,+∞)上的函数f(x)满足:对∀x1,x2∈(0,+∞)恒有manfen5.com 满分网,且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)证明:函数f(x)在区间(0,+∞)上为单调递减函数;
(3)若f(3)=-1,
(ⅰ)求f(9)的值;(ⅱ)解不等式:f(3x)<-2.
查看答案
用水清洗一堆蔬菜,据科学测定,其效果如下:用x单位量的水清洗一次以后,蔬菜上残留的农药量与这次清洗前残留的农药量之比为manfen5.com 满分网
(1)因为f(0)=______,所以f(0)的实际意义是______(后一个处请选择下列之一);
A.表示没有用水清洗时,蔬菜上的农药量;
B.表示没有用水清洗时,蔬菜上的农药量没有变化;
C.表示没有用水清洗.
(2)现用a(a>0)单位量的水去清洗一堆蔬菜,方案一:用a单位量的水清洗一次;
方案二:把a单位量的水平均分成2份后清洗两次.试问:哪种方案比较好(即清洗后蔬菜上残留的农药量比较少)?请说明理由.
(为方便计算,可以假设清洗前蔬菜上的农药量为1,清洗后残留的农药量:方案一的记为W1,方案二的记为W2).
查看答案
已知函数f(x)=manfen5.com 满分网(x+1),当点P(x,y)在函数y=f(x)的图象上移动时,点manfen5.com 满分网在函数y=g(x)的图象上移动.
(1)若x=1,且点Q也在函数y=f(x)的图象上,求y,t的值;
(2)当t=0时,求函数y=g(x)的解析式.
查看答案
符号[x]表示不超过x的最大整数,如[2.3]=2,[-1.3]=-2.若定义函数f(x)=x+[x],则下列命题中所有不正确命题的序号为   
①函数f(x)的定义域为R;  
②函数f(x)的值域为R;   
③函数f(x)是奇函数;
④函数f(x)是周期函数;    
⑤函数f(x)是R上的增函数. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.