满分5 > 高中数学试题 >

已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0)...

已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数,又manfen5.com 满分网
(Ⅰ)求f(x)的解析式;
(Ⅱ)若在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围.
(Ⅰ)由“f(x)在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数”,则有f'(0)=f'(1)=0,再由 .求解. (Ⅱ)首先将“f(x)≤x,x∈[0,m]成立”转化为“x(2x-1)(x-1)≥0,x∈[0,m]成立”求解. 【解析】 (Ⅰ)f'(x)=3ax2+2bx+c,由已知f'(0)=f'(1)=0, 即 解得 ∴f'(x)=3ax2-3ax, ∴, ∴a=-2, ∴f(x)=-2x3+3x2. (Ⅱ)令f(x)≤x,即-2x3+3x2-x≤0, ∴x(2x-1)(x-1)≥0, ∴或x≥1. 又f(x)≤x在区间[0,m]上恒成立, ∴.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)判断函数f(x)的奇偶性,并给予证明;
(2)求证:方程f(x)-lnx=0至少有一根在区间(1,3).
查看答案
已知函数f(x)=x2+(lga+2)x+lgb满足f(-1)=-2且对于任意x∈R,恒有f(x)≥2x成立.
(1)求实数a,b的值;
(2)解不等式f(x)<x+5.
查看答案
已知a∈R,设P:函数y=ax在R上递增,Q:复数Z=(a-4)+ai所对应的点在第二象限如果P且Q为假,P或Q为真,求a的取值范围.
查看答案
记函数f(x)=log2(2x-3)的定义域为集合M,函数g(x)=manfen5.com 满分网的定义域为集合N.求:
(1)集合M、N;
(2)集合M∩N、M∪N.
查看答案
若函数f(x)=manfen5.com 满分网(a>0)在[1,+∞)上的最大值为manfen5.com 满分网,则a的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.