满分5 > 高中数学试题 >

已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为,右顶点为D(2...

manfen5.com 满分网已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为manfen5.com 满分网,右顶点为D(2,0),设点manfen5.com 满分网
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;
(3)过原点O的直线交椭圆于点B,C,求△ABC面积的最大值.
(1)由“左焦点为,右顶点为D(2,0)”得到椭圆的半长轴a,半焦距c,再求得半短轴b最后由椭圆的焦点在x轴上求得方程. (2)设线段PA的中点为M(x,y),点P的坐标是(x,y),由中点坐标公式,分别求得x,y,代入椭圆方程,可求得线段PA中点M的轨迹方程. (3)分直线BC垂直于x轴时和直线BC不垂直于x轴两种情况分析,求得弦长|BC|,原点到直线的距离建立三角形面积模型,再用基本不等式求其最值. 【解析】 (1)由已知得椭圆的半长轴a=2,半焦距c=,则半短轴b=1. 又椭圆的焦点在x轴上, ∴椭圆的标准方程为 (2)设线段PA的中点为M(x,y),点P的坐标是(x,y), 由得 由,点P在椭圆上,得, ∴线段PA中点M的轨迹方程是. (3)当直线BC垂直于x轴时,BC=2, 因此△ABC的面积S△ABC=1. 当直线BC不垂直于x轴时,说该直线方程为y=kx,代入, 解得B(,),C(-,-), 则,又点A到直线BC的距离d=, ∴△ABC的面积S△ABC= 于是S△ABC= 由≥-1,得S△ABC≤,其中,当k=-时,等号成立. ∴S△ABC的最大值是.
复制答案
考点分析:
相关试题推荐
已知动点P与平面上两定点A(-1,0),B(1,0)连线的斜率的积为定值-2.
(1)试求动点P的轨迹方程C.
(2)设直线l:y=x+1与曲线C交于M、N两点,求|MN|
查看答案
中心在原点,焦点在x轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且manfen5.com 满分网,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3:7.求这两条曲线的方程.
查看答案
已知椭圆C的焦点F1(-manfen5.com 满分网,0)和F2manfen5.com 满分网,0),长轴长6,设直线y=x+2交椭圆C于A、B两点,求线段AB的中点坐标    查看答案
求适合下列条件的双曲线的标准方程:
(1)焦点在 x轴上,虚轴长为12,离心率为 manfen5.com 满分网
(2)顶点间的距离为6,渐近线方程为manfen5.com 满分网
查看答案
双曲线manfen5.com 满分网的一条准线被它的两条渐近线截得线段的长度等于它的一个焦点到一条渐近线的距离,则双曲线的两条渐近线的夹角为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.