△ABC中设AB=c,BC=a,AC=b,由sinB=cosA•sinC结合三角形的内角和及和角的正弦公式化简可求 cosC=0 即C=90°,再由,S△ABC=6可得bccosA=9,可求得c=5,b=3,a=4,考虑建立以AC所在的直线为x轴,以BC所在的直线为y轴建立直角坐标系,由P为线段AB上的一点,则存在实数λ使得=(3λ,4-4λ)(0≤λ≤1),设则,,由=(x,0)+(0,y)=(x,y)可得x=3λ,y=4-4λ则4x+3y=12而,利用基本不等式求解最小值.
【解析】
△ABC中设AB=c,BC=a,AC=b
∵sinB=cosA•sinC∴sin(A+C)=sinCcosnA
即sinAcosC+sinCcosA=sinCcosA
∴sinAcosC=0∵sinA≠0∴cosC=0 C=90°
∵,S△ABC=6
∴bccosA=9,
∴,根据直角三角形可得sinA=,cosA=,bc=15
∴c=5,b=3,a=4
以AC所在的直线为x轴,以BC所在的直线为y轴建立直角坐标系可得C(0,0)A(3,0)B(0,4)
P为线段AB上的一点,则存在实数λ使得=(3λ,4-4λ)(0≤λ≤1)
设则,
∴=(x,0)+(0,y)=(x,y)
∴x=3λ,y=4-4λ则4x+3y=12
=
故所求的最小值为
故选:C