满分5 > 高中数学试题 >

设正四面体A-BCD中,E、F分别为AC、AD的中点,则△BEF在该四面体的面A...

设正四面体A-BCD中,E、F分别为AC、AD的中点,则△BEF在该四面体的面ADC上的射影可能是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
由于是正四面体,不难得到B在ADC上的射影是三角形ADC的中心,可得到BEF在ADC上的射影,即可推出正确选项. 【解析】 由于几何体是正四面体, 所以B在ADC上的射影是它的中心,可得到三角形BEF在ADC上的射影, 因为F在AD上,E在AC上, 所以考察选项,只有A正确. 故选A.
复制答案
考点分析:
相关试题推荐
已知命题甲:ab>0;命题乙:方程ax2+by2=1的曲线是椭圆.则命题甲是命题乙的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
查看答案
给出下列四个命题,真命题是( )
①垂直于同一条直线的两条直线平行
②垂直于同一个平面的两个平面平行
③若直线l1,l2与同一个平面所成的角相等,则l1∥l2
④对任意的直线l与平面α,在平面α内必有直线m,使m与l垂直.
A.①②③④
B.②③④
C.①②
D.④
查看答案
已知直线manfen5.com 满分网,则直线的倾斜角为( )
A.60°
B.-60°
C.150°
D.120°
查看答案
(1)若以连续两次掷骰子分别得到的点数m,n作为点P的坐标(m,n),求:点P落在圆x2+y2=18内的概率.
(2)在区间[1,6]上任取两实数m,n,求:使方程x2+mx+n2=0没有实数根的概率.
查看答案
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日    期12月1日12月2日12月3日12月4日12月5日
温差x(°C)101113128
发芽数y(颗)2325302616
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程manfen5.com 满分网
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.