满分5 > 高中数学试题 >

已知抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成...

已知抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a,b值,并求S的最大值.
依题设可知抛物线与x轴的交点的横坐标分别为x1=0,,所以=.由直线x+y=4与抛物线y=ax2+bx相切,知ax2+(b+1)x-4=0中△=(b+1)2+16a=0,由此能求出S达到最大值的a,b值及S的最大值. 【解析】 依题设可知抛物线与x轴的交点的横坐标分别为x1=0,, 所以=() =+ =(1)…(4分) 又直线x+y=4与抛物线y=ax2+bx相切, 即它们有唯一的公共点 由方程组, 得ax2+(b+1)x-4=0,其判别式△必须为0, 即△=(b+1)2+16a=0, 于是,…(8分) 代入(1)式得:, . 令S′(b)=0,在b>0时,得b=3; 当0<b<3时,S′(b)>0; 当b>3时,S′(b)<0. 故在b=3时,S(b)取得极大值,也是最大值, 即a=-1,b=3时,S取得最大值,且.…(12分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,某地有三家工厂,分别位于矩形ABCD的两个顶点A,B及CD的中点P处.AB=20km,BC=10km.为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A,B等距的一点O处,建造一个污水处理厂,并铺设三条排污管道AO,BO,PO.记铺设管道的总长度为ykm.
(1)按下列要求建立函数关系式:
(i)设∠BAO=θ(rad),将y表示成θ的函数;
(ii)设OP=x(km),将y表示成x的函数;
(2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短.
查看答案
已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f'(x)+6x的图象的对称轴为y轴
(I)求函数y=f(x)的解析式及它的单调递减区间
(II)若函数y=f(x)的极小值在区间(a-1,a+1)内,求a的取值范围.
查看答案
已知manfen5.com 满分网展开式中各项的系数之和比各项的二项式系数之和大992.
(Ⅰ)求展开式中二项式系数最大的项;    (Ⅱ)求展开式中系数最大的项.
查看答案
给出下列四个结论:
①命题“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”;
②“若am2<bm2,则a<b”的逆命题为真;
③函数f(x)=x-sinx(x∈R)有3个零点;
④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x).
其中正确结论的序号是    (填上所有正确结论的序号) 查看答案
(文)已知y=f(x)是偶函数,y=g(x)是奇函数,它们的定义域均为[-3,3],且它们在x∈[0,3]上的图象如图所示,则不等式manfen5.com 满分网的解集是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.