(1)设等差数列{log2(an-1)}的公差为d.由a1=3,a3=9可得2(log22+d)=log22+log28,可求d,由等差数列的通项公式可求log2(an-1),进而可求an
(2)由(1)可得an=2n+1.利用分组求和,结合等比数列的求和公式可求Sn
【解析】
(1)设等差数列{log2(an-1)}的公差为d.
由a1=3,a3=9得,2(log22+d)=log22+log28,解得d=1.
所以log2(an-1)=1+(n-1)×1=n,
∴an=2n+1.
(2)∵an=2n+1.
∴Sn=a1+a2+…+an=(2+1)+(22+1)+…+(2n+1)
=(2+22+…+2n)+n==2n+1+n-2