(Ⅰ)由cosB的值和B的范围,利用同角三角函数间的基本关系求出sinB的值,又a,b,c成等比数列,根据等比数列的性质及正弦定理化简得到一个关系式,然后把所求的式子利用同角三角函数间的基本关系及两角和与差的正弦函数公式化简后,将得到的关系式和sinB的值代入即可求出值;
(Ⅱ)根据平面向量的数量积得运算法则及cosB的值化简•=,即可得到ac的值,进而得到b2的值,然后由余弦定理和完全平方公式,由b2和ac及cosB的值,即可得到a+c的值.
【解析】
(Ⅰ)由,
由b2=ac及正弦定理得sin2B=sinAsinC.
于是=.(6分)
(Ⅱ)由.
由余弦定理:b2=a2+c2-2ac•cosB,又b2=ac=2,cosB=,
得a2+c2=b2+2ac•cosB=2+4×=5,
则(a+c)2=a2+c2+2ac=5+4=9,解得:a+c=3.(12分)