满分5 > 高中数学试题 >

数列{an}的前N项和为Sn,a1=1,an+1=2Sn(n∈N*). (Ⅰ)求...

数列{an}的前N项和为Sn,a1=1,an+1=2Sn(n∈N*).
(Ⅰ)求数列{an}的通项an
(Ⅱ)求数列{nan}的前n项和T.
(I)利用递推公式an+1=2Sn把已知转化为an+1与an之间的关系,从而确定数列an的通项; (II)由(I)可知数列an从第二项开始的等比数列,设bn=n则数列bn为等差数列,所以对数列n•an的求和应用乘“公比”错位相减. 【解析】 (I)∵an+1=2Sn, ∴Sn+1-Sn=2Sn, ∴=3. 又∵S1=a1=1, ∴数列{Sn}是首项为1、公比为3的等比数列,Sn=3n-1(n∈N*). ∴当n≥2时,an-2Sn-1=2•3n-2(n≥2), ∴an= (II)Tn=a1+2a2+3a3+…+nan, 当n=1时,T1=1; 当n≥2时,Tn=1+4•30+6•31+…+2n•3n-2,①3Tn=3+4•31+6•32+…+2n•3n-1,② ①-②得:-2Tn=-2+4+2(31+32+…+3n-2)-2n•3n-1=2+2•=-1+(1-2n)•3n-1 ∴Tn=+(n-)3n-1(n≥2). 又∵Tn=a1=1也满足上式,∴Tn=+(n-)3n-1(n∈N*)
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网成等差数列.又数列an(an>0)中a1=3此数列的前n项的和Sn(n∈N+)对所有大于1的正整数n都有Sn=f(Sn-1).
(1)求数列an的第n+1项;
(2)若manfen5.com 满分网manfen5.com 满分网的等比中项,且Tn为{bn}的前n项和,求Tn
查看答案
关于x的不等式ax2+bx+c<0的解集为{x|x<-2或x>manfen5.com 满分网,求关于x的不等式ax2-bx+c>0的解集.
查看答案
某种汽车购买时费用为14.4万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,…,依等差数列逐年递增.
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
查看答案
已知△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)设manfen5.com 满分网的值.
查看答案
已知数列{log2(an-1)},(n∈N*)为等差数列,且a1=3,a3=9.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.