满分5 > 高中数学试题 >

在△ABC中,角A,B,C所对的边分别为a,b,c,且满足ccosB+bcosC...

在△ABC中,角A,B,C所对的边分别为a,b,c,且满足ccosB+bcosC=4acosA.
(Ⅰ) 求cosA的值    (Ⅱ) 若△ABC的面积是manfen5.com 满分网,求manfen5.com 满分网的值.
(Ⅰ)根据正弦定理把已知的等式变形,然后利用两角和的正弦函数公式及诱导公式化简后,根据sinA不为0,即可得到cosA的值; (Ⅱ)由(Ⅰ)求出的cosA的值,根据A的范围,利用同角三角函数间的基本关系即可求出sinA的值,然后利用三角形的面积公式,由三角形的面积等于和求出的sinA的值求出bc的值,利用平面向量的数量积的运算法则,把bc的值和cosA的值代入即可求出值. 【解析】 (Ⅰ)利用正弦定理, 得sinCcosB+sinBcosC=4sinAcosA, sin(B+C)=4sinAcosA, 即sinA=4cosAsinA, 所以cosA=. (Ⅱ)由(I),得sinA=, 由题意,得bcsinA=, 所以bc=8, 因此=bccosA=2.
复制答案
考点分析:
相关试题推荐
下列四个命题:
①圆(x+2)2+(y+1)2=4与直线x-2y=0相交,所得弦长为2;
②直线y=kx与圆(x-cosθ)2+(y-sinθ)2=1恒有公共点;
③若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为108π;
④若棱长为manfen5.com 满分网的正四面体的顶点都在同一球面上,则该球的体积为manfen5.com 满分网
其中,正确命题的序号为    .写出所有正确命的序号) 查看答案
如图,已知直线l1∥l2,点A是l1,l2之间的定点,点A到l1,l2之间的距离分别为3和2,点B是l2上的一动点,作AC⊥AB,且AC与l1交于点C,则△ABC的面积的最小值为   
manfen5.com 满分网 查看答案
若平面区域manfen5.com 满分网是一个三角形,则k的取值范围是    查看答案
对于命题:如果O是线段AB上一点,则manfen5.com 满分网;将它类比到平面 的情形是:若O是△ABC内一点,有manfen5.com 满分网;将它类比到空间的情形应该是:若O是四面体ABCD内一点,则有    查看答案
某校有6间不同的电脑室,每天晚上至少开放2间,则不同安排方案的种数是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.