满分5 > 高中数学试题 >

已知椭圆的离心率为,椭圆上任意一点到右焦点F的距离的最大值为. (I)求椭圆的方...

已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,椭圆上任意一点到右焦点F的距离的最大值为manfen5.com 满分网
(I)求椭圆的方程;
(Ⅱ)已知点C(m,0)是线段OF上一个动点(O为坐标原点),是否存在过点F且与x轴不垂直的直线l与椭圆交于A、B两点,使得|AC|=|BC|,并说明理由.
(1)结合已知,可求a,c,由b2=a2-c2可求b,进而可求椭圆方程 (2)由题意可知0≤m<1,假设存在满足题意的直线l,设l的方程为y=k(x-1),代入,设A(x1,y1),B(x2,y2),根据方程的根与系数关系可求x1+x2,x1x2,根据y1+y2=k(x1+x2-2),从而可求B的中点为M,由|AC|=|BC|可得kCM•kAB=-1可得m,k之间得关系,结合m的范围可求k 【解析】 (1)因为,所以,(4分) ∴b=1,椭圆方程为:                 (6分) (2)由(1)得F(1,0),所以0≤m<1,假设存在满足题意的直线l,设l的方程为y=k(x-1), 代入,得(1+2k2)x2-4k2x+2k2-2=0 设A(x1,y1),B(x2,y2),则,  ①,(10分) y1+y2=k(x1+x2-2)= 设AB的中点为M,则M(), ∵|AC|=|BC| ∴CM⊥AB即kCM•kAB=-1 ∴ ∴(1-2m)k2=m ∴当时,,即存在这样的直线l 当,k不存在,即不存在这样的直线l           (15分)
复制答案
考点分析:
相关试题推荐
已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.
(I)求证:EF⊥平面PAD;
(II)求平面EFG与平面ABCD所成锐二面角的大小.

manfen5.com 满分网 查看答案
一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.
求:(Ⅰ)恰好摸到2个“心”字球的概率;
(Ⅱ)摸球次数X的概率分布列和数学期望.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足ccosB+bcosC=4acosA.
(Ⅰ) 求cosA的值    (Ⅱ) 若△ABC的面积是manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
下列四个命题:
①圆(x+2)2+(y+1)2=4与直线x-2y=0相交,所得弦长为2;
②直线y=kx与圆(x-cosθ)2+(y-sinθ)2=1恒有公共点;
③若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为108π;
④若棱长为manfen5.com 满分网的正四面体的顶点都在同一球面上,则该球的体积为manfen5.com 满分网
其中,正确命题的序号为    .写出所有正确命的序号) 查看答案
如图,已知直线l1∥l2,点A是l1,l2之间的定点,点A到l1,l2之间的距离分别为3和2,点B是l2上的一动点,作AC⊥AB,且AC与l1交于点C,则△ABC的面积的最小值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.