满分5 > 高中数学试题 >

已知抛物线C的顶点在原点,焦点为F(2,0). (1)求抛物线C的方程; (2)...

已知抛物线C的顶点在原点,焦点为F(2,0).
(1)求抛物线C的方程;
(2)过N(-1,0)的直线l交曲C于A,B两点,又AB的中垂线交y轴于点D(0,t),求t的取值范围.
(1)设抛物线方程为y2=2px,则,由此能求出抛物线的方程. (2)直线l的方程是y=k(x+1),联立,消去x得ky2-8y+8k=0,再由根的判别别式和韦达定理能够推导出t的取值范围. 【解析】 (1)设抛物线方程为y2=2px,则,∴p=4, 所以,抛物线的方程是y2=8x.(4分) (2)由题设知,直线l的斜率存在,故设直线l的方程是y=k(x+1),联立,消去x得ky2-8y+8k=0,(6分) 显然k≠0,由△=64-32k2>0,得0<|k|<.(8分) 由韦达定理得,y1+y2=,y1y2=8, 所以,则AB中点E坐标是(),(10分) 由kDE-k=-1可得k3t-3k2-4=0, 所以,t=,令,则t=4x3+3x,其中|x|,(12分) 因为t′=12x2+3>0,所以函数t=4x3+3x是在(-),()上增函数. 所以,t的取值范围是(-)∪.(15分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,f(x)在x=1处的切线的斜率为-1,
(1)求f(x)的解析式及单调区间;
(2)是否总存在实数m,使得对任意的x1∈[-1,2],总存在x∈[0,1],使得g(x)=f(x1)成立?若存在,求出实数m的取值范围;若不存在,说明理由.
查看答案
如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,E、F、H分别是棱BB1、CC1、DD1的中点.
(Ⅰ)求证:BH∥平面A1EFD1
(Ⅱ)求直线AF与平面A1EFD1所成的角的正弦值.

manfen5.com 满分网 查看答案
已知数列{an}的前n项和是Sn,且manfen5.com 满分网
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log3(1-Sn+1),求适合方程manfen5.com 满分网的n的值.
查看答案
已知函数f(x)=2sinmanfen5.com 满分网
(1)求f(x)的最小正周期;
(2)若0≤x≤π,求f(x)的最大值和最小值.
查看答案
如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横纵坐标分别对应数列{an} (n∈N*)的前12项,如下表所示:
a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6
按如此规律下去,则a2010 等于   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.