满分5 > 高中数学试题 >

如图,O为坐标原点,直线l在x轴和y轴上的截距分别是a和b(a>0,b≠0),且...

manfen5.com 满分网如图,O为坐标原点,直线l在x轴和y轴上的截距分别是a和b(a>0,b≠0),且交抛物线y2=2px(p>0)于M(x1,y1),N(x2,y2)两点.
(1)写出直线l的截距式方程;
(2)证明:manfen5.com 满分网+manfen5.com 满分网=manfen5.com 满分网
(3)当a=2p时,求∠MON的大小.
(1)根据直线的截距式方程易知直线l的方程为+=1. (2)欲证+=,即求的值,为此只需求直线l与抛物线y2=2px交点的纵坐标.由根与系数的关系易得y1+y2、y1y2的值,进而证得+=. (3)设直线OM、ON的斜率分别为k1、k2,则k1=,k2=.因此k1k2===-1,所以OM⊥ON,即∠MON=90°. (1)【解析】 直线l的截距式方程为+=1.① (2)证明:由①及y2=2px消去x可得by2+2pay-2pab=0.② 点M、N的纵坐标y1、y2为②的两个根,故y1+y2=,y1y2=-2pa. 所以+===. (3)【解析】 设直线OM、ON的斜率分别为k1、k2, 则k1=,k2=. 当a=2p时,由(2)知,y1y2=-2pa=-4p2, 由y12=2px1,y22=2px2,相乘得(y1y2)2=4p2x1x2, x1x2===4p2, 因此k1k2===-1. 所以OM⊥ON,即∠MON=90°.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2+manfen5.com 满分网(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.
查看答案
如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,E、F、H分别是棱BB1、CC1、DD1的中点.
(Ⅰ)求证:BH∥平面A1EFD1
(Ⅱ)求直线AF与平面A1EFD1所成的角的正弦值.

manfen5.com 满分网 查看答案
已知数列{an}是等差数列,a2=3,a4+a5+a6=27,Sn为数列{an}的前n项和
(1)求an和Sn;      (2)若manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,函数manfen5.com 满分网
(1)求f(x)的最小正周期;
(2)若0≤x≤π,求f(x)的最大值和最小值.
查看答案
设抛物线y2=4x上一点P到直线x+2=0的距离是5,则点P到抛物线焦点F的距离为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.