满分5 > 高中数学试题 >

已知圆,定点,点P为圆M上的动点,点Q在NP上,点G在MP上,且满足. (I)求...

已知圆manfen5.com 满分网,定点manfen5.com 满分网,点P为圆M上的动点,点Q在NP上,点G在MP上,且满足manfen5.com 满分网
(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设manfen5.com 满分网,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.
(I)点Q在NP上,点G在MP上,且满足故有|GN|+|GM|=|MP|=6,由椭圆的定义知G点的轨迹是以M、N为焦点的椭圆,由定义写出其标准方程即可得到点G的轨迹C的方程. (II),所以四边形OASB为平行四边形,若存在l使得||=||,则四边形OASB必为矩形即有,令A(x1,y1),B(x2,y2),则有x1x2+y1y2=0,由直线l与曲线C联立求利用根与系数的关系求出x1x2,y1y2的参数表达式,代入求直线的斜率k,若能求出,则说明存在,若不能求出,则不存在. 【解析】 (I)Q为PN的中点且GQ⊥PN⇒GQ为PN的中垂线⇒|PG|=|GN| ∴|GN|+|GM|=|MP|=6,故G点的轨迹是以M、N为焦点的椭圆,其长半轴长a=3,半焦距, ∴短半轴长b=2,∴点G的轨迹方程是(5分) (II)因为,所以四边形OASB为平行四边形 若存在l使得||=||,则四边形OASB为矩形∴ 若l的斜率不存在,直线l的方程为x=2, 由得∴,与矛盾, 故l的斜率存在.(7分) 设l的方程为y=k(x-2),A(x1,y1),B(x2,y2) 由 ∴① y1y2=[k(x1-2)][k(x2-2)]=②(9分) 把①、②代入x1x2+y1y2=0得 ∴存在直线l:3x-2y-6=0或3x+2y-6=0使得四边形OASB的对角线相等.
复制答案
考点分析:
相关试题推荐
已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,manfen5.com 满分网)为圆心、1为半径的圆相切,又知双曲线C的一个焦点与点A关于直线y=x对称.
(1)求双曲线C的方程.
(2)设直线l:y=mx+1与双曲线C的左支交于A,B两点,求实数m的取值范围.
查看答案
某房屋开发公司用128万元购得一块土地,欲建成不低于五层的楼房一幢,该楼每层的建筑面积为1000平方米,楼房的总建筑面积(即各层面积之和)的每平方米的平均建筑费用与楼层有关,若该楼建成x层时,每平方米的平均建筑费用用f(x)表示,且f(n)=f(m)(1+manfen5.com 满分网)(其中n>m,n∈N),又知建成五层楼房时,每平方米的平均建筑费用为400元,为了使该楼每平方米的综合费用最省(综合费用是建筑费用与购地费用之和),公司应把该楼建成几层?
查看答案
已知椭圆manfen5.com 满分网+manfen5.com 满分网=1上的两点A、B与右焦点F2满足|AF2|+|BF2|=manfen5.com 满分网a,又线段AB中点到左准线的距离为manfen5.com 满分网,求此椭圆方程.
查看答案
(文科)解关于x的不等式:manfen5.com 满分网(a>0)
查看答案
(理科)解关于x的不等式:manfen5.com 满分网(a>0)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.