满分5 > 高中数学试题 >

函数y=( ) A.{x|0<x<3} B.{x|x≥3} C.{x|x≠0} ...

函数y=manfen5.com 满分网( )
A.{x|0<x<3}
B.{x|x≥3}
C.{x|x≠0}
D.{x|x>2}
要满足偶次根式的被开方数大于等于0;要满足对数的真数大于0;要满足分式的分母不等于0,解不等式组即可 【解析】 要使得原函数有意义,则应满足: 即: ∴ ∴x≥3 ∴原函数的定义域为{x|x≥3} 故选B
复制答案
考点分析:
相关试题推荐
椭圆C:manfen5.com 满分网(a>b>0),A1、A2、B1、B2分别为椭圆C的长轴与短轴的端点.
(1)设点M(x,0),若当且仅当椭圆C上的点P在椭圆长轴顶点A1、A2处时,|PM|取得最大值与最小值,求x的取值范围;
(2)若椭圆C上的点P到焦点距离的最大值为3,最小值为l,且与直线l:y=kx+m相交于A,B两点(A,B不是椭圆的左右顶点),并满足AA2⊥BA2.试研究:直线l是否过定点?若过定点,请求出定点坐标,若不过定点,请说明理由.
查看答案
椭圆C:manfen5.com 满分网的两个焦点F1(-c,0)、F2(c,0),M是椭圆C上一点,且满足manfen5.com 满分网
(1)求椭圆的离心率e的取值范围;(2)设O为坐标原点,P是椭圆C上的一个动点,试求manfen5.com 满分网的取值范围.
查看答案
如图,四棱锥P-ABCD中,PB⊥底面ABCD,CD⊥PD.底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB.点E在棱PA上,.
(1)求异面直线PA与CD所成的角;
(2)点E在棱PA上,且manfen5.com 满分网,当λ为何值时,有PC∥平面EBD;
(3)在(2)的条件下求二面角A-BE-D的平面角的余弦值.

manfen5.com 满分网 查看答案
已知函数f(x)=x2+mx+n(m∈R,n∈R).
(1)若n=1时,“至少存在一个实数x,使f(x)<0成立”(命题表示为∃x∈R,使f(x)<0成立)为假命题,求m的取值范围;
(2)命题P:函数y=f(x)在(0,1)上有两个不同的零点,命题Q:-2<m<0,0<n<1.试分析P是Q的什么条件,并说明理由.(是充要条件、充分不必要条件、必要条件、既不充分也不必要条件)
查看答案
manfen5.com 满分网在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1C1D1,且这个几何体的体积为manfen5.com 满分网
(1)证明:直线A1B∥平面CDD1C1
(2)求棱A1A的长;
(3)求经过A1,C1,B,D四点的球的表面积.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.