满分5 > 高中数学试题 >

如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱S...

如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的manfen5.com 满分网倍,P为侧棱SD上的点.
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.

manfen5.com 满分网
(1)连BD,设AC交于BD于O,由题意知SO⊥平面ABCD.以O为坐标原点,分别为x轴、y轴、z轴正方向,建立坐标系O-xyz,设底面边长为a,求出高SO,从而得到点S与点C和D的坐标,求出向量与,计算它们的数量积,从而证明出OC⊥SD,则AC⊥SD; (2)根据题意先求出平面PAC的一个法向量和平面DAC的一个法向量,设所求二面角为θ,则,从而求出二面角的大小; (3)在棱SC上存在一点E使BE∥平面PAC,根据(Ⅱ)知是平面PAC的一个法向量,设,求出,根据可求出t的值,从而即当SE:EC=2:1时,,而BE不在平面PAC内,故BE∥平面PAC 证明:(1)连BD,设AC交于BD于O,由题意知SO⊥平面ABCD. 以O为坐标原点, 分别为x轴、y轴、z轴正方向,建立坐标系O-xyz如图. 设底面边长为a,则高. 于是, ,, , 故OC⊥SD 从而AC⊥SD (2)由题设知,平面PAC的一个法向量, 平面DAC的一个法向量. 设所求二面角为θ,则, 所求二面角的大小为30°. (3)在棱SC上存在一点E使BE∥平面PAC. 由(Ⅱ)知是平面PAC的一个法向量, 且 设, 则 而 即当SE:EC=2:1时, 而BE不在平面PAC内,故BE∥平面PAC
复制答案
考点分析:
相关试题推荐
一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分.
(1)若从袋子里一次随机取出3个球,求得4分的概率;
(2)若从袋子里每次摸出一个球,看清颜色后放回,连续摸2次,求得分ξ的概率分布列及数学期望.
查看答案
如图A、B是单位圆O上的点,C是圆与x轴正半轴的交点,A点的坐标为manfen5.com 满分网,三角形AOB为正三角形.
(1)求sin∠COA;
(2)求|BC|2的值.

manfen5.com 满分网 查看答案
已知函数f(n)=logn+1(n+2)(n∈N*),定义使f(1)•f(2)…f(k)为整数的数k(k∈N*)叫做企盼数,则在区间[1,50]内这样的企盼数共有    个. 查看答案
非零向量manfen5.com 满分网=(sinθ,2),manfen5.com 满分网=(cosθ,1),若manfen5.com 满分网manfen5.com 满分网共线,则tan(θ-manfen5.com 满分网)=    查看答案
{an}是等差数列,若a1,a3,a4是等比数列{bn}的连续三项,则{bn}的公比为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.