椭圆C:
+
=1(a>b>0)的两个焦点为F
1、F
2,短轴两端点B
1、B
2,已知F
1、F
2、B
1、B
2四点共圆,且点N(0,3)到椭圆上的点最远距离为5
.
(1)求此时椭圆C的方程;
(2)设斜率为k(k≠0)的直线m与椭圆C相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于过点P(0,
)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.
考点分析:
相关试题推荐
已知双曲线
的左、右顶点分别为A
1,A
2,点P(x
1,y
1),Q(x
1,-y
1)是双曲线上不同的两个动点.
(1)求直线A
1P与A
2Q交点的轨迹E的方程;
(2)若过点H(0,h)(h>1)的两条直线l
1和l
2与轨迹E都只有一个交点,且l
1⊥l
2,求h的值.
查看答案
已知椭圆C的左、右焦点坐标分别是
,
,离心率是
,直线y=t椭圆C交与不同的两点M,N,以线段为直径作圆P,圆心为P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标;
(Ⅲ)设Q(x,y)是圆P上的动点,当T变化时,求y的最大值.
查看答案
已知双曲线
,过B(1,1)能否作直线l,使l与双曲线交于P,Q两点,且B是线段PQ的中点,这样的直线如果存在,求出它的方程;如果不存在,说明理由.
查看答案
已知不等式ax
2-3x+2>0的解集为{x|x<1或x>b}.
(Ⅰ)求a,b的值;
(Ⅱ)解不等式
(t为常数)
查看答案
椭圆E经过点A(2,3),对称轴为坐标轴,焦点F
1,F
2在x轴上,离心率e=
.
(Ⅰ)求椭圆E的方程;
(Ⅱ)求∠F
1AF
2的角平分线所在直线的方程.
查看答案