满分5 > 高中数学试题 >

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4...

manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D为AB的中点.
(Ⅰ)求证AC⊥BC1
(Ⅱ)求证AC1∥平面CDB1
(Ⅲ)求异面直线AC1与B1C所成角的余弦值.
解法一:(1):利用勾股定理的逆定理判断出AC⊥BC,同时因为三棱柱为直三棱柱,从而证出. (2):因为D为AB的中点,连接C1B和CB1交点为E,连接DE,∵D是AB的中点,E是BC1的中点,根据三角形中位线定理得DE∥AC1,得到AC1∥平面CDB1;第三问:因为AC1∥DE,所以∠CED为AC1与B1C所成的角,求出此角即可. 解法二:利用空间向量法.如图建立坐标系, (1):证得向量点积为零即得垂直. (2):=λ,与两个向量或者共线或者平行可得.第三问: 证明:(Ⅰ)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4,AB=5, ∴AC⊥BC,且BC1在平面ABC内的射影为BC,∴AC⊥BC1; (Ⅱ)设CB1与C1B的交点为E,连接DE, ∵D是AB的中点,E是BC1的中点, ∴DE∥AC1, ∵DE⊂平面CDB1,AC1⊂平面CDB1, ∴AC1∥平面CDB1; (Ⅲ)∵DE∥AC1,∴∠CED为AC1与B1C所成的角, 在△CED中,ED=AC1=,CD=AB=,CE=CB1=2, ∴cos∠CED==, ∴异面直线AC1与B1C所成角的余弦值. 解法二: ∵直三棱锥ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,AC,BC,CC1两两垂直. 如图建立坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D(,2,0)(Ⅰ)∵=(-3,0,0),=(0,4,4), ∴•=0, ∴⊥. (Ⅱ)设CB1与C1B的交点为E,则E(0,2,2) ∵=(-,0,2),=(-3,0,4), ∴=,∴∥ ∵DE⊂平面CDB1,AC1⊂平面CDB1,∴AC1∥平面CDB1. (Ⅲ)∵=(-3,0,0),=(0,4,4), ∴cos<,>==, ∴异面直线AC1与B1C所成角的余弦值为.
复制答案
考点分析:
相关试题推荐
编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:
运动员编号A1A2A3A4A5A6A7A8
   得分1535212825361834
运动员编号A9A10A11A12A13A14A15A16
   得分1726253322123138
(Ⅰ)将得分在对应区间内的人数填入相应的空格;
区间[10,20)[20,30)[30,40]
人数
(Ⅱ)从得分在区间[20,30)内的运动员中随机抽取2人,
(i)用运动员的编号列出所有可能的抽取结果;
(ii)求这2人得分之和大于50分的概率.
查看答案
等比数列{an}中,已知a1=2,a4=16
(I)求数列{an}的通项公式;
(Ⅱ)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn
查看答案
已知f(x)=2sin(π-x)sinmanfen5.com 满分网
(1)求f(x)的最小正周期.
(2)若A,B,C是锐角△ABC的内角,其对边分别是a,b,c,且manfen5.com 满分网,b2=ac试判断△ABC的形状.
查看答案
manfen5.com 满分网程序框图(即算法流程图)如图所示,其输出结果是    查看答案
已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.