本题可用分析法来解答,分析法:证明使x4+y4≥成立的充分条件成立,
证明:要证x4+y4≥,只需证明2(x4+y4)≥xy(x+y)2,
即证2(x4+y4)≥x3y+xy3+2x2y2,---------------------------(4分)
只需x4+y4≥x3y+xy3与x4+y4≥2x2y2同时成立即可,
又知x4+y4-2x2y2=(x2-y2)2≥0,即x4+y4≥2x2y2成立,
只需再有x4+y4≥x3y+xy3成立即可,--------------------(8分)
由于x4+y4-x3y-xy3=(x-y)(x3-y3)
∵x-y与x3-y3同号,∴(x-y)(x3-y3)≥0,即x4+y4≥x3y+xy3成立,
∴对于任意实数x,y都有x4+y4≥成立--------------(12分)