满分5 > 高中数学试题 >

为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑...

为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=manfen5.com 满分网,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
(I)由建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=,若不建隔热层,每年能源消耗费用为8万元.我们可得C(0)=8,得k=40,进而得到.建造费用为C1(x)=6x,则根据隔热层建造费用与20年的能源消耗费用之和为f(x),我们不难得到f(x)的表达式. (II)由(1)中所求的f(x)的表达式,我们利用导数法,求出函数f(x)的单调性,然后根据函数单调性易求出总费用f(x)的最小值. 【解析】 (Ⅰ)设隔热层厚度为xcm,由题设,每年能源消耗费用为. 再由C(0)=8,得k=40, 因此. 而建造费用为C1(x)=6x, 最后得隔热层建造费用与20年的能源消耗费用之和为 (Ⅱ),令f'(x)=0,即. 解得x=5,(舍去). 当0<x<5时,f′(x)<0,当5<x<10时,f′(x)>0,故x=5是f(x)的最小值点,对应的最小值为. 当隔热层修建5cm厚时,总费用达到最小值为70万元.
复制答案
考点分析:
相关试题推荐
证明:对于任意实数x,y都有x4+y4manfen5.com 满分网
查看答案
已知函数f(x)=-x3+ax2+4x-3,当x=-2时,函数f(x)有极值.
(1)求函数f(x)的单调减区间;
(2)求函数f(x)过点P(1-2)的切线方程.
查看答案
计算:(1)manfen5.com 满分网
(2)manfen5.com 满分网
查看答案
已知(2x-1)+i=y-(3-y)i,其中x,y∈R,求x,y的值.
查看答案
已知数列{an}中,manfen5.com 满分网(n为正整数),依次计算a2,a3,a4后,归纳、猜想出an=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.