满分5 > 高中数学试题 >

已知抛物线C:y=mx2(m>0),焦点为F,直线2x-y+2=0交抛物线C于A...

已知抛物线C:y=mx2(m>0),焦点为F,直线2x-y+2=0交抛物线C于A、B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q,
(1)若抛物线C上有一点R(xR,2)到焦点F的距离为3,求此时m的值;
(2)是否存在实数m,使△ABQ是以Q为直角顶点的直角三角形?若存在,求出m的值;若不存在,说明理由.

manfen5.com 满分网
(1)先求出焦点坐标,再利用抛物线的定义把焦点F的距离为3转化为到准线的距离为3即可求m的值;(也可以直接利用两点间的距离公式求解.) (2)△ABQ是以Q为直角顶点的直角三角形即是,把直线方程和抛物线方程联立,可以得到A,B两点的坐标进而求得P以及Q的坐标,代入,即可求出m的值. 【解析】 (1)∵抛物线C的焦点, ∴,得. (2)联立方程, 消去y得mx2-2x-2=0,设A(x1,mx12),B(x2,mx22), 则(*), ∵P是线段AB的中点,∴,即,∴, 得, 若存在实数m,使△ABQ是以Q为直角顶点的直角三角形,则, 即, 结合(*)化简得, 即2m2-3m-2=0,∴m=2或(舍去), ∴存在实数m=2,使△ABQ是以Q为直角顶点的直角三角形.
复制答案
考点分析:
相关试题推荐
设函数f(x)=manfen5.com 满分网x3-(1+a)x2+4ax+24a,其中常数a≥1
(I)讨论f(x)的单调性;
(II)是否存在实数a≥1,使得对任意x≥0,都有f(x)>0成立?若存在,求出a的所有可能取值;若不存在,请说明理由.
查看答案
一个多面体的三视图和直观图如图所示,其中正视图和俯视图均为矩形,侧视图为直角三角形,M、G分别是AB、DF的中点.
manfen5.com 满分网
(1)求证:CM⊥平面FDM;
(2)在线段AD上确定一点P,使得GP∥平面FMC,并给出证明;
(3)求直线DM与平面ABEF所成的角.
查看答案
在公差为d(d≠0)的等差数列{an}和公比为q的等比数列{bn}中,已知a1=b1=1,a2=b2,a8=b3
(1)求数列{an}与{bn}的通项公式;
(2)令cn=an•bn,求数列{cn}的前n项和Tn
查看答案
设△ABC的内角A,B,C所对的边长分别为a,b,c,且manfen5.com 满分网,b=2.
(Ⅰ)当A=30°时,求a的值;
(Ⅱ)当△ABC的面积为3时,求a+c的值.
查看答案
函数manfen5.com 满分网,x∈[1,2],manfen5.com 满分网,(a>0),对任意的x1∈[1,2],总存在x2∈[0,1],使得g(x2)=f(x1)成立,则a的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.