满分5 > 高中数学试题 >

已知函数f(x)=(x3+3x2+ax+b)e-x. (1)如a=b=-3,求f...

已知函数f(x)=(x3+3x2+ax+b)e-x
(1)如a=b=-3,求f(x)的单调区间;
(2)若f(x)在(-∞,α),(2,β)单调增加,在(α,2),(β,+∞)单调减少,证明:β-α<6.
(1)对函数f(x)求导,里用导函数求解单调区间; (2)利用导函数的性质即函数的单调区间加以证明. 【解析】 (Ⅰ)当a=b=-3时,f(x)=(x3+3x2-3x-3)e-x, 故f′(x)=-(x3+3x2-3x-3)e-x+(3x2+6x-3)e-x=-e-x(x-3-9x)=-x(x-3)(x+3)e-x 当x<-3或0<x<3时,f′(x)>0; 当-3<x<0或x>3时,f′(x)<0. 从而f(x)在(-∞,-3),(0,3)单调增加,在(-3,0),(3,+∞)单调减少; (Ⅱ)f′(x)=-(x3+3x2+ax+b)e-x+(3x2+6x+a)e-x=-e-x[x3+(a-6)x+b-a]. 由条件得:f′(2)=0,即23+2(a-6)+b-a=0,故b=4-a, 从而f′(x)=-e-x[x3+(a-6)x+4-2a]. 因为f′(α)=f′(β)=0, 所以x3+(a-6)x+4-2a=(x-2)(x-α)(x-β)=(x-2)(x2-(α+β)x+αβ). 将右边展开,与左边比较系数得,α+β=-2,αβ=a-2. 故., 又(β-2)(α-2)<0,即αβ-2(α+β)+4<0.由此可得a<-6. 于是β-α>6.
复制答案
考点分析:
相关试题推荐
设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.
(1)求数列{an}的通项公式及前n项和公式;
(2)设数列{bn}的通项公式为manfen5.com 满分网,问:是否存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.
查看答案
设数列满足a1=2,an+1-an=3•22n-1
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列的前n项和Sn
查看答案
某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?
查看答案
知等差数列{an}的前n项和为Sn,且a3=5,S15=225.
(Ⅰ)求数列{an}的通项an
(Ⅱ)设bn=manfen5.com 满分网+2n,求数列{bn}的前n项和Tn
查看答案
已知函数f (x)=2asin2x+2sinxcosx-a的图象过点(0,-manfen5.com 满分网).
(1)求常数a;
(2)当x∈[0,manfen5.com 满分网]时,求函数f (x) 的值域.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.