满分5 > 高中数学试题 >

已知a,b∈R,p:ab=0,q:a2+b2=0,则p是q的( ) A.充分不必...

已知a,b∈R,p:ab=0,q:a2+b2=0,则p是q的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
先化简p为a=0或b=0;q为a=b=0;判断出p成立q不一定成立,反之q成立p一定成立,利用充要条件的有关定义得到结论. 【解析】 p:ab=0即为a=0或b=0; q:a2+b2=0即为a=b=0; 所以p成立q不一定成立,反之q成立p一定成立, 所以p是q的必要不充分条件, 故选B.
复制答案
考点分析:
相关试题推荐
设A、B是椭圆3x2+y2=λ上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.
(1)确定λ的取值范围,并求直线AB的方程;
(2)求以线段CD的中点M为圆心且与直线AB相切的圆的方程.
查看答案
设正数数列{an}的前n项和为Sn,且对任意的n∈N*,Sn是an2和an的等差中项.
(1)求数列{an}的通项公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k<1500}中,是否存在正整数m,使得不等式manfen5.com 满分网对一切满足n>m的正整数n都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m的值;若不存在,请说明理由;
(3)请构造一个与数列{Sn}有关的数列{un},使得manfen5.com 满分网存在,并求出这个极限值.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,manfen5.com 满分网,且AB=BC=2AD=2,侧面PAB⊥底面ABCD,△PAB是等边三角形.
(1)求证:BD⊥PC;
(2)求二面角B-PC-D的大小.

manfen5.com 满分网 查看答案
设函数 f(x)=ax3+bx+c是定义在R上的奇函数,且函数f(x)的图象在x=1处的切线方程y=3x+2.
(Ⅰ)求函数f(x) 的表达式;
(Ⅱ)若对任意x∈(0,1]都有f(x)<manfen5.com 满分网成立,求实数m的取值范围.
查看答案
甲、乙两支篮球队进行比赛,已知每一场甲队获胜的概率为0.6,乙队获得的概率为0.4,每场比赛均要分出胜负,比赛时采用三场两胜制,即先取得两场胜利的球队胜出.
(Ⅰ)求甲队以二比一获胜的概率;
(Ⅱ)求乙队获胜的概率;
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.