满分5 > 高中数学试题 >

一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的...

一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是manfen5.com 满分网;从袋中任意摸出2个球,至少得到1个白球的概率是manfen5.com 满分网
(Ⅰ)若袋中共有10个球,
   从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ.
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于manfen5.com 满分网.并指出袋中哪种颜色的球个数最少.
(I)首先根据从袋中任意摸出2个球,至少得到1个白球的概率是,列出关系式,得到白球的个数,从袋中任意摸出3个球,白球的个数为ξ,根据题意得到变量可能的取值,结合对应的事件,写出分布列和期望. (II)设出两种球的个数,根据从袋中任意摸出2个球,至少得到1个黑球的概率不大于,得到两个未知数之间的关系,得到白球的个数比黑球多,白球个数多于,红球的个数少于,得到袋中红球个数最少. 【解析】 (Ⅰ)记“从袋中任意摸出两个球,至少得到一个白球”为事件A, 设袋中白球的个数为x, 则, 得到x=5. 故白球有5个. 随机变量ξ的取值为0,1,2,3, ∴分布列是 ∴ξ的数学期望. (Ⅱ)证明:设袋中有n个球,其中y个黑球,由题意得, ∴2y<n,2y≤n-1, 故. 记“从袋中任意摸出两个球,至少有1个黑球”为事件B, 则. ∴白球的个数比黑球多,白球个数多于,红球的个数少于. 故袋中红球个数最少.
复制答案
考点分析:
相关试题推荐
已知直线l1:x-2y-1=0,直线l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6}.
(1)求直线l1∩l2=∅的概率;
(2)求直线l1与l2的交点位于第一象限的概率.
查看答案
已知函数f(x)=ax3-manfen5.com 满分网x2+b,(x∈R).
(1)若曲线y=f(x)在点(2,f(2))处的切线方程为y=6x-8,求a的值;
(2)若a>0,b=2,当x∈[-1,1]时,求f(x)的最小值.
查看答案
设函数f(x)=-x(x-a)2(x∈R),其中a∈R.当a≠0时,求函数f(x)的极大值和极小值.
查看答案
已知在(manfen5.com 满分网-manfen5.com 满分网n的展开式中,第6项为常数项.
(1)求n; 
(2)求含x2项的系数; 
(3)求展开式中所有的有理项.
查看答案
已知函数f(x)的导函数f'(x)的图象如图所示,给出以下结论:
①函数f(x)在(-2,-1)和(1,2)是单调递增函数;
②函数f(x)在(-2,0)上是单调递增函数,在(0,2)上是单调递减函数;
③函数f(x)在x=-1处取得极大值,在x=1处取得极小值;
④函数f(x)在x=0处取得极大值f(0).
则正确命题的序号是    .(填上所有正确命题的序号)
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.