一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是
;从袋中任意摸出2个球,至少得到1个白球的概率是
.
(Ⅰ)若袋中共有10个球,
从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ.
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于
.并指出袋中哪种颜色的球个数最少.
考点分析:
相关试题推荐
已知直线l
1:x-2y-1=0,直线l
2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6}.
(1)求直线l
1∩l
2=∅的概率;
(2)求直线l
1与l
2的交点位于第一象限的概率.
查看答案
已知函数f(x)=ax
3-
x
2+b,(x∈R).
(1)若曲线y=f(x)在点(2,f(2))处的切线方程为y=6x-8,求a的值;
(2)若a>0,b=2,当x∈[-1,1]时,求f(x)的最小值.
查看答案
设函数f(x)=-x(x-a)
2(x∈R),其中a∈R.当a≠0时,求函数f(x)的极大值和极小值.
查看答案
已知在(
-
)
n的展开式中,第6项为常数项.
(1)求n;
(2)求含x
2项的系数;
(3)求展开式中所有的有理项.
查看答案
已知函数f(x)的导函数f'(x)的图象如图所示,给出以下结论:
①函数f(x)在(-2,-1)和(1,2)是单调递增函数;
②函数f(x)在(-2,0)上是单调递增函数,在(0,2)上是单调递减函数;
③函数f(x)在x=-1处取得极大值,在x=1处取得极小值;
④函数f(x)在x=0处取得极大值f(0).
则正确命题的序号是
.(填上所有正确命题的序号)
查看答案