先求出函数的导函数,求出函数的单调区间,再根据已知在区间(a,10-a2)有最小值确定出参数a的取值范围.
【解析】
由已知,f′(x)=x2-1,有x2-1≥0得x≥1或x≤-1,
因此当x∈[1,+∞),(-∞,-1]时f(x)为增函数,在x∈[-1,1]时f(x)为减函数.
又因为函数上有最小值,所以开区间(a,10-a2)须包含x=1,
所以函数f(x)的最小值即为函数的极小值f(1)=-,
又由f(x)=-可得x3-x=-,于是得(x-1)2(x+2)=0
即有f(-2)=-,因此有以下不等式成立:
,可解得-2≤a<1,
答案为:[-2,1)