(1)根据对数的真数大于零,列出不等式组并求出解集,函数的定义域用集合或区间表示出来;
(2)利用对数的运算性质对解析式进行化简,再由f(x)=0,即-x2-2x+3=1,求此方程的根并验证是否在函数的定义域内;
(3)把函数解析式化简后,利用配方求真数在定义域内的范围,再根据对数函数在定义域内递减,求出函数的最小值loga4,得loga4=-4利用对数的定义求出a的值.
【解析】
(1)要使函数有意义:则有,解之得:-3<x<1,
则函数的定义域为:(-3,1)
(2)函数可化为f(x)=loga(1-x)(x+3)=loga(-x2-2x+3)
由f(x)=0,得-x2-2x+3=1,
即x2+2x-2=0,
∵,∴函数f(x)的零点是
(3)函数可化为:
f(x)=loga(1-x)(x+3)=loga(-x2-2x+3)=loga[-(x+1)2+4]
∵-3<x<1,∴0<-(x+1)2+4≤4,
∵0<a<1,∴loga[-(x+1)2+4]≥loga4,
即f(x)min=loga4,由loga4=-4,得a-4=4,
∴