我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.
某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:
①若每月用水量不超过最低限量m立方米时,只付基本费9元和每户每月定额损耗费a元;
②若每月用水量超过m立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n元的超额费;
③每户每月的定额损耗费a不超过5元.
(1)求每户每月水费y(元)与月用水量x(立方米)的函数关系;
(2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:
月份 | 用水量(立方米) | 水费(元) |
一 | 4 | 17 |
二 | 5 | 23 |
三 | 2.5 | 11 |
试分析该家庭今年一、二、三各月份的用水量是否超过最低限量,并求m,n,a的值.
考点分析:
相关试题推荐
已知函数f(x)=
,若f(x)满足f(-x)=-f(x).
(1)求实数a的值;
(2)证明f(x)是R上的增函数;
(3)求函数f(x)的值域.
查看答案
已知函数f(x)=log
a(1-x)+log
a(x+3)(0<a<1)
(1)求函数f(x)的定义域;
(2)求函数f(x)的零点;
(3)若函数f(x)的最小值为-4,求a的值.
查看答案
已知函数
(1)在给定的直角坐标系内画出f(x)的图象;
(2)写出f(x)的单调递增区间(不需要证明);
(3)写出f(x)的最大值和最小值(不需要证明).
查看答案
已知A={x|3≤x<7},(B={x|2<x<10},C={x|x<a},全集为实数集R.
(1)求A∪B,(∁
RA)∩B;
(2)如果A∩C≠∅,求a的取值范围.
查看答案
若函数f(x)=1n(x
2-ax+1)有最小值,则实数a的取值范围为
.
查看答案