满分5 > 高中数学试题 >

已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)...

已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值.
(2)求f(x)的解析式.
(3)已知a∈R,设P:当manfen5.com 满分网时,不等式f(x)+3<2x+a恒成立;Q:当x∈[-2,2]时,g(x)=f(x)-ax是单调函数.如果满足P成立的a的集合记为A,满足Q成立的a的集合记为B,求A∩CRB(R为全集).
(1)对抽象函数满足的函数值关系的理解和把握是解决该问题的关键,对自变量适当的赋值可以解决该问题,结合已知条件可以赋x=-1,y=1求出f(0); (2)在(1)基础上赋值y=0可以实现求解f(x)的解析式的问题; (3)利用(2)中求得的函数的解析式,结合恒成立问题的求解策略,即转化为相应的二次函数最值问题求出集合A,利用二次函数的单调性求解策略求出集合B. 【解析】 (1)令x=-1,y=1,则由已知f(0)-f(1)=-1(-1+2+1) ∴f(0)=-2 (2)令y=0,则f(x)-f(0)=x(x+1) 又∵f(0)=-2 ∴f(x)=x2+x-2 (3)不等式f(x)+3<2x+a即x2+x-2+3<2x+a 也就是x2-x+1<a.由于当时,,又x2-x+1=恒成立, 故A={a|a≥1},g(x)=x2+x-2-ax=x2+(1-a)x-2 对称轴x=, 又g(x)在[-2,2]上是单调函数,故有, ∴B={a|a≤-3,或a≥5},CRB={a|-3<a<5} ∴A∩CRB={a|1≤a<5}.
复制答案
考点分析:
相关试题推荐
我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.
某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:
①若每月用水量不超过最低限量m立方米时,只付基本费9元和每户每月定额损耗费a元;
②若每月用水量超过m立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n元的超额费;
③每户每月的定额损耗费a不超过5元.
(1)求每户每月水费y(元)与月用水量x(立方米)的函数关系;
(2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:
月份用水量(立方米)水费(元)
417
523
2.511
试分析该家庭今年一、二、三各月份的用水量是否超过最低限量,并求m,n,a的值.
查看答案
已知函数f(x)=manfen5.com 满分网,若f(x)满足f(-x)=-f(x).
(1)求实数a的值;
(2)证明f(x)是R上的增函数;
(3)求函数f(x)的值域.
查看答案
已知函数f(x)=loga(1-x)+loga(x+3)(0<a<1)
(1)求函数f(x)的定义域;
(2)求函数f(x)的零点;
(3)若函数f(x)的最小值为-4,求a的值.
查看答案
已知函数manfen5.com 满分网
(1)在给定的直角坐标系内画出f(x)的图象;
(2)写出f(x)的单调递增区间(不需要证明);
(3)写出f(x)的最大值和最小值(不需要证明).

manfen5.com 满分网 查看答案
已知A={x|3≤x<7},(B={x|2<x<10},C={x|x<a},全集为实数集R.
(1)求A∪B,(∁RA)∩B;
(2)如果A∩C≠∅,求a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.