满分5 > 高中数学试题 >

如图,在四棱锥S-ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S-...

如图,在四棱锥S-ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S-CD-A的平面角为45°,M为AB中点,N为SC中点.
(1)证明:MN∥平面SAD;
(2)证明:平面SMC⊥平面SCD;
(3)若manfen5.com 满分网,求实数λ的值,使得直线SM与平面SCD所成角为30°.

manfen5.com 满分网
(1)取SD中点E,连接AE,NE,由三角形中位线定理,及M为AB中点,可证明四边形AMNE为平行四边形,则MN∥AE,由线面平行的判定定理即可得到MN∥平面SAD; (2)由已知中SA⊥平面ABCD,底面ABCD为矩形可得,SA⊥CD,AD⊥CD,由线面垂直的判定定理可得CD⊥平面SAD,则∠SDA即为二面角S-CD-A的平面角,结合已知中二面角S-CD-A的平面角为45°,可得△SAD为等腰直角三角形,则AE⊥SD,结合CD⊥AE及线面垂直的判定定理,可得AE⊥平面SCD,则MN⊥平面SCD,最终由面面垂直的判定定理可得 平面SMC⊥平面SCD (3)若,设AD=SA=a,则CD=λa,结合(2)的结论,可得∠MSN即为直线SM与平面SCD所成角,等于30°,解三角形SAM,即可求出λ值. 证明:(1)取SD中点E,连接AE,NE, 则, ∴四边形AMNE为平行四边形,∴MN∥AE…(1分) 又∵MN⊄平面SAD…(3分) (2)∵SA⊥平面ABCD,∴SA⊥CD,∵底面ABCD为矩形,∴AD⊥CD, 又∵SA∩AD=A,∴CD⊥平面SAD,∴CD⊥SD∴∠SDA即为二面角S-CD-A的平面角, 即∠SDA=45°…(5分)∴△SAD为等腰直角三角形,∴AE⊥SD∵CD⊥平面SAD,∴CD⊥AE, 又SD∩CD=D,∴AE⊥平面SCD∵MN∥AE,∴MN⊥平面SCD,∵MN⊂平面SMC,∴平面SMC⊥平面SCD…(8分) (3)∵,设AD=SA=a,则CD=λa 由(2)可得MN⊥平面SCD,∴SN即为SM在平面SCD内的射影∴∠MSN即为直线SM与平面SCD所成角, 即∠MSN=30°…(9分) 而MN=AE=,∴Rt△SAM中,,而,∴Rt△SAM中,由得,解得λ=2 当λ=2时,直线SM与平面SCD所成角为30°(14分)
复制答案
考点分析:
相关试题推荐
已知数列{an}的首项manfen5.com 满分网manfen5.com 满分网,n=1,2,3,….
(Ⅰ)证明:数列manfen5.com 满分网是等比数列;
(Ⅱ)求数列manfen5.com 满分网的前n项和Sn
查看答案
已知A、B、C是△ABC三内角,向量manfen5.com 满分网=(-1,manfen5.com 满分网),manfen5.com 满分网=(cosA,sinA),且manfen5.com 满分网
(Ⅰ)求角A
(Ⅱ)若manfen5.com 满分网
查看答案
若对任意x∈R,y∈R有唯一确定的f (x,y)与之对应,则称f (x,y)为关于x,y的二元函数.
定义:同时满足下列性质的二元函数f (x,y)为关于实数x,y的广义“距离”:
(Ⅰ)非负性:f (x,y)≥0;
(Ⅱ)对称性:f (x,y)=f (y,x);
(Ⅲ)三角形不等式:f (x,y)≤f (x,z)+f (z,y)对任意的实数z均成立.
给出下列二元函数:
①f (x,y)=(x-y)2
②f (x,y)=|x-y|;
③f (x,y)=manfen5.com 满分网
④f (x,y)=|sin(x-y)|.
则其中能够成为关于x,y的广义“距离”的函数编号是    .(写出所有真命题的序号) 查看答案
在△ABC中,三边a、b、c所对的角分别为A、B、C,若manfen5.com 满分网,则角C的大小为    查看答案
分别从写有数字1,2,3,4的四张卡片中随机取出两张,则取出的两张卡片上的数字之和为奇数的概率是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.