满分5 > 高中数学试题 >

已知函数f(x)=x2-1与函数g(x)=alnx(a≠0). (I)若f(x)...

已知函数f(x)=x2-1与函数g(x)=alnx(a≠0).
(I)若f(x),g(x)的图象在点(1,0)处有公共的切线,求实数a的值;
(II)设F(x)=f(x)-2g(x),求函数F(x)的极值.
(I)先判定点(1,0)与函数f(x),g(x)的图象的位置关系,然后分别求出在x=1处的导数,根据函数f(x),g(x)的图象在点(1,0)处有公共的切线,建立等量关系,求出a的值; (II)先求出F(x)的解析式和定义域,然后在定义域内研究F(x)的导函数,讨论a的正负,分别判定F'(x)=0的值附近的导数符号,确定极值. 【解析】 (I)因为f(1)=0,g(1)=0, 所以点(1,0)同时在函数f(x),g(x)的图象上(1分) 因为f(x)=x2-1,g(x)=alnx,f'(x)=2x,(3分)(5分) 由已知,得f'(1)=g'(1),所以,即a=2(6分) (II)因为F(x)=f(x)-2g(x)=x2-1-2alnx(x>0)(7分) 所以(8分) 当a<0时,因为x>0,且x2-a>0,所以F'(x)>0对x>0恒成立, 所以F(x)在(0,+∞)上单调递增,F(x)无极值(10分) 当a>0时,令F'(x)=0,解得(舍)(11分) 所以当x>0时,F'(x),F(x)的变化情况如下表: (13分) 所以当时,F(x)取得极小值,且.(14分) 综上,当a<0时,函数F(x)在(0,+∞)上无极值; 当a>0时,函数F(x)在处取得极小值a-1-alna.
复制答案
考点分析:
相关试题推荐
已知动圆C过定点F(manfen5.com 满分网),且与直线x=manfen5.com 满分网相切,圆心C的轨迹记为E.,曲线E与直线l:y=k(x+1)(k∈R)相交于A、B两点.
(Ⅰ)求曲线E的方程;
(Ⅱ)当△OAB的面积等于manfen5.com 满分网时,求k的值;
(Ⅲ)在曲线E上,是否存在与k的取值无关的定点M,使得MA⊥MB?若存在,求出所有符合条件的定点M;若不存在,请说明理由.
查看答案
如图,在四棱锥S-ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S-CD-A的平面角为45°,M为AB中点,N为SC中点.
(1)证明:MN∥平面SAD;
(2)证明:平面SMC⊥平面SCD;
(3)若manfen5.com 满分网,求实数λ的值,使得直线SM与平面SCD所成角为30°.

manfen5.com 满分网 查看答案
已知数列{an}的首项manfen5.com 满分网manfen5.com 满分网,n=1,2,3,….
(Ⅰ)证明:数列manfen5.com 满分网是等比数列;
(Ⅱ)求数列manfen5.com 满分网的前n项和Sn
查看答案
已知A、B、C是△ABC三内角,向量manfen5.com 满分网=(-1,manfen5.com 满分网),manfen5.com 满分网=(cosA,sinA),且manfen5.com 满分网
(Ⅰ)求角A
(Ⅱ)若manfen5.com 满分网
查看答案
若对任意x∈R,y∈R有唯一确定的f (x,y)与之对应,则称f (x,y)为关于x,y的二元函数.
定义:同时满足下列性质的二元函数f (x,y)为关于实数x,y的广义“距离”:
(Ⅰ)非负性:f (x,y)≥0;
(Ⅱ)对称性:f (x,y)=f (y,x);
(Ⅲ)三角形不等式:f (x,y)≤f (x,z)+f (z,y)对任意的实数z均成立.
给出下列二元函数:
①f (x,y)=(x-y)2
②f (x,y)=|x-y|;
③f (x,y)=manfen5.com 满分网
④f (x,y)=|sin(x-y)|.
则其中能够成为关于x,y的广义“距离”的函数编号是    .(写出所有真命题的序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.