已知椭圆C:
与双曲线
-y
2=1有公共焦点,且离心率为
.A,B分别是椭圆C的左顶点和右顶点.点S是椭圆C上位于x轴上方的动点.直线AS,BS分别与直线l:x=
分别交于M,N两点.
(1)求椭圆C的方程;
(2)延长MB交椭圆C于点P,若PS⊥AM,试证明MS
2=MB•MP.
(3)当线段MN的长度最小时,在椭圆C上是否存在点T,使得△TSB的面积为
?若存在确定点T的个数,若不存在,说明理由.
考点分析:
相关试题推荐
为了考察冰川的融化状况,一支科考队在某冰川山上相距8Km的A、B两点各建一个考察基地,视冰川面为平面形,以过A、B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(如图).考察范围到A、B两点的距离之和不超过10Km的区域.
(1)求考察区域边界曲线的方程:
(2)如图所示,设线段P
1P
2(3)是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍.问:经过多长时间,点A恰好在冰川边界线上?
查看答案
设P为椭圆
上任意一点,F
1,F
2为左、右焦点.
(1)若∠F
1PF
2=60°,求|
|-|
|;
(2)椭圆上是否存在点P,使
-
=0若存在,求出P点的坐标,若不存在,试说明理由.
查看答案
对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合计 | M | 1 |
(Ⅰ)求出表中M,p及图中a的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.
查看答案
已知动圆M过定点F(2,0),且与直线x=-2相切,动圆圆心M的轨迹为曲线C
(1)求曲线C的方程
(2)若过F(2,0)且斜率为1的直线与曲线C相交于A,B两点,求|AB|
查看答案
已知a>0,设命题p:函数y=a
x在R上单调递减,q:设函数
对任意的x,恒有y>1.若p∧q为假,p∨q为真,求a的取值范围.
查看答案