满分5 > 高中数学试题 >

已知公差大于零的等差数列an的前n项和为Sn,且满足:a3•a4=117,a2+...

已知公差大于零的等差数列an的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.
(1)求数列an的通项公式an
(2)若数列bn是等差数列,且manfen5.com 满分网,求非零常数c;
(3)若(2)中的bn的前n项和为Tn,求证:manfen5.com 满分网
(1)利用等差数列的性质可得,联立方程可得a3,a4,代入等差数列的通项公式可求an (2)代入等差数列的前n和公式可求sn,进一步可得bn,然后结合等差数列的定义可得2b2=b1+b3,从而可求c (3)要证原不等式A>B⇔A>M,B<M,分别利用二次函数及均值不等式可证.℃ 【解析】 (1)an为等差数列,a3•a4=117,a2+a5=22 又a2+a5=a3+a4=22 ∴a3,a4是方程x2-22x+117=0的两个根,d>0 ∴a3=9,a4=13 ∴ ∴d=4,a1=1 ∴an=1+(n-1)×4=4n-3 (2)由(1)知, ∵ ∴,,, ∵bn是等差数列,∴2b2=b1+b3,∴2c2+c=0, ∴(c=0舍去), (3)由(2)得, 2Tn-3bn-1=2(n2+n)-3(2n-2)=2(n-1)2+4≥4, 但由于n=1时取等号,从而等号取不到2Tn-3bn-1=2(n2+n)-3(2n-2)=2(n-1)2+4>4, ∴, n=3时取等号(15分) (1)、(2)式中等号不能同时取到,所以.
复制答案
考点分析:
相关试题推荐
已知不等式x2-5mx+4m2≤0的解集为A,不等式ax2-x+1-a<0的解集为B.
(1)求A;
(2)若m=1时,A∩B=A,求a的取值范围.
查看答案
某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该机床开始盈利?
(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.
查看答案
设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=manfen5.com 满分网,求数列{cn}的前n项和Tn
查看答案
已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.
查看答案
在等比数列{an}中,a1•a2•a3=27,a2+a4=30试求:
(1)a1和公比q;
(2)前6项的和S6
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.