满分5 > 高中数学试题 >

如图所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE=AB=2a,...

如图所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE=AB=2a,CD=a,F是BE的中点.
(1)求证:DF∥平面ABC;
(2)求证:AF⊥BD.

manfen5.com 满分网
(1)欲证DF∥平面ABC,根据直线与平面平行的判定定理可知只需证DF与平面ABC内一直线平行,而DF∥CG,CG⊂平面ABC,DF⊄平面ABC,满足定理条件; (2)欲证AF⊥BD,可先证AF⊥平面BDF,根据直线与平面垂直的判定定理可知只需证AF与平面BDF内两相交直线垂直,而AF⊥BE,DF⊥AF,满足定理条件. 证明:(1)取AB的中点G,连接FG,可得FG∥AE,FG=AE, 又CD⊥平面ABC,AE⊥平面ABC, ∴CD∥AE,CD=AE, ∴FG∥CD,FG=CD, ∵FG⊥平面ABC, ∴四边形CDFG是矩形,DF∥CG, CG⊂平面ABC,DF⊄平面ABC, ∴DF∥平面ABC. (2)Rt△ABE中,AE=2a,AB=2a, F为BE中点,∴AF⊥BE, ∵△ABC是正三角形,∴CG⊥AB, ∴DF⊥AB, 又DF⊥FG, ∴DF⊥平面ABE,DF⊥AF, ∴AF⊥平面BDF,∴AF⊥BD.
复制答案
考点分析:
相关试题推荐
计算下列各题:
(1)manfen5.com 满分网
(2).manfen5.com 满分网
查看答案
设x1,x2为y=f(x)的定义域内的任意两个变量,有以下几个命题:
①(x1-x2)[f(x1)-f(x2)]>0;
②(x1-x2)[f(x1)-f(x2)]<0;
manfen5.com 满分网>0;
manfen5.com 满分网<0.
其中能推出函数y=f(x)为增函数的命题为    查看答案
若⊙O1:x2+y2=5与⊙O2:(x-m)2+y2=20(m∈R)相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是    查看答案
点(2,3)关于直线:x+y-6=0对称的点为    查看答案
设函数f(x)=(x+1)(x+a)为偶函数,则a=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.