根据条件得到对称性和函数的单调性,然后画出满足条件的图象,结合图象进行解题即可.
【解析】
∵f(x+1)是定义域为R的偶函数∴f(x)关于x=1对称即f(x+1)=f(-x+1)
∵x≥1时,,
∴f(x)在[1,+∞)上单调递减
根据f(x)关于x=1对称可知f(x)在(-∞,1)上单调递增
∴f(1)=,f(2)=-结合图象可知|f(a)|<|f(0)|
∵
∴
∵a2-a+1>a>1
∴f(a2-a+1)<f(a)
∵1<a2+1<5
∴f(a2+1)>f(5)=f(-3)故选项B不正确
故选B.