满分5 > 高中数学试题 >

已知二次函数f(x)=ax2+bx,f(x+1)为偶函数,函数f(x)的图象与直...

已知二次函数f(x)=ax2+bx,f(x+1)为偶函数,函数f(x)的图象与直线y=x相切.
(1)求f(x)的解析式;
(2)若函数g(x)=[f(x)-k]x在(-∞,+∞)上是单调减函数,那么:
①求k的取值范围;
②是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域恰好为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由.
(1)欲求求f(x)的解析式,先利用f(x)的解析式求得f(x+1)的解析式,结合f(x+1)为偶函数列出等式,再根据函数f(x)的图象与直线y=x相切,将直线的方程代入二次函数的解析式,利用根的唯一性的条件列出另一个方程.从而求出a,b.问题解决. (2)①先求函数g(x)的导函数,利用:“函数g(x)=[f(x)-k]x在(-∞,+∞)上是单调减函数”得其导数恒小于等于0,最后结合二次函数的根的判别式即可求k的取值范围; ②对于存在性问题,可先假设存在,即假设存在区间[m,n](m<n),再利用二次函数的单调性,求出m,n的值,若出现矛盾,则说明假设不成立,即不存在;否则存在. 【解析】 (1)∵f(x+1)为偶函数,∴f(-x+1)=f(x+1), 即a(-x+1)2+b(-x+1)=a(x+1)2+b(x+1)恒成立, 即(2a+b)x=0恒成立,∴2a+b=0,∴b=-2a,∴f(x)=ax2-2ax ∵函数f(x)的图象与直线y=x相切, ∴二次方程ax2-(2a+1)x=0有两相等实数根, ∴△=(2a+1)2-4a×0=0 ∴(4分) (2)①, ∵g(x)在(-∞,+∞)上是单调减函数 ∴g′(x)≤0在(-∞,+∞)上恒成立. ∴,得 故k的取值范围为(7分) ②∵, ∴, ∴,, ∴, ∴[m,n]⊆(-∞,1], ∴f(x)在[m,n]上是单调递增函数(9分) ∴即即(11分) ∵m<n故当时,[m,n]=[0,2-2k]; 当k>1时,[m,n]=[2-2k,0];当k=1时,[m,n]不存在. (13分)
复制答案
考点分析:
相关试题推荐
已知a∈R,函数f(x)=x2(x-a).
(Ⅰ)当a=3时,求f(x)的零点;
(Ⅱ)求函数y=f (x)在区间[1,2]上的最小值.
查看答案
在平面直角坐标系xOy中,已知圆心在第二象限,半径为2manfen5.com 满分网的圆C与直线y=x相切于坐标原点O.椭圆manfen5.com 满分网=1与圆C的一个交点到椭圆两点的距离之和为10.
(1)求圆C的方程;
(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案
在长方形ABEF中,D,C分别是AF和BE的中点,M和N分别是AB和AC的中点,AF=2AB=2a,将平面DCEF沿着DC折起,使角∠ADF=90°,G是DF上一动点,求证:
(1)GN⊥AC
(2)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC.并给出证明.

manfen5.com 满分网 查看答案
在数列{an}中,a1=1,manfen5.com 满分网
(1)求{an}的通项公式.
(2)若数列{bn}满足a1b1+a2b2+a3b3+…+anbn=manfen5.com 满分网,求数列{bn}的通项公式.
查看答案
已知△ABC顶点的直角坐标分别为A(3,4),B(0,0),C(c,0 )
(1)若c=5,求sin∠A的值;
(2)若∠A是钝角,求c的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.