设小正方形的边长为xcm,则盒子容积为:y=(8-2x)•(5-2x)•x为三次函数,用求导法,可得x=1时,函数y取得最大值,此时盒子容积最大.
【解析】
设小正方形的边长为xcm,则x∈(0,);
盒子容积为:y=(8-2x)•(5-2x)•x=4x3-26x2+40x,
对y求导,得y′=12x2-52x+40,令y′=0,得12x2-52x+40=0,解得:x=1,x=(舍去),
所以,当0<x<1时,y′>0,函数y单调递增;当1<x<时,y′<0,函数y单调递减;
所以,当x=1时,函数y取得最大值18;
所以,小正方形的边长为1cm,盒子容积最大,最大值为18cm3.