满分5 > 高中数学试题 >

在直角坐标系xOy中,以O为圆心的圆与直线:x-y=4相切 (1)求圆O的方程 ...

在直角坐标系xOy中,以O为圆心的圆与直线:x-manfen5.com 满分网y=4相切
(1)求圆O的方程
(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求manfen5.com 满分网的取值范围.
首先分析到题目(1)中圆是圆心在原点的标准方程,由切线可直接求得半径,即得到圆的方程.对于(2)根据圆内的动点P使|PA|、|PO|、|PB|成等比数列,列出方程,再根据点P在圆内求出取值范围. 【解析】 (1)依题设,圆O的半径r等于原点O到直线的距离, 即. 得圆O的方程为x2+y2=4. (2)不妨设A(x1,0),B(x2,0),x1<x2.由x2=4即得A(-2,0),B(2,0). 设P(x,y),由|PA|,|PO|,|PB|成等比数列,得, 即x2-y2=2.=x2-4+y2=2(y2-1). 由于点P在圆O内,故 由此得y2<1. 所以的取值范围为[-2,0).
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)当a=4,解不等式f(x)>3x;
(2)若函数g(x)=f(2x)是奇函数,求a的值;
(3)若不等式f(x)<x在[0,+∞)上恒成立,求实数a的取值范围.
查看答案
已知数列{an}的前n项和为Sn,且对任意正整数n,都有an是n与Sn的等差中项.
(1)求证:an=2an-1+1(n≥2);
(2)求证:数列{an+1}为等比数列;
(3)求数列{an}的前n项和Sn
查看答案
已知函数manfen5.com 满分网+cos2x+a(a∈R,a为常数).
(I)求函数的最小正周期;
(II)求函数的单调递减区间;
(III)若manfen5.com 满分网时,f(x)的最小值为-2,求a的值.
查看答案
在支援汶川灾后重建过程中,某市要派50辆汽车完成一批简易板房的运输任务.假设以v公里/小时的速度直达目的地,已知运送的总路程为400公里,为了安全起见,每两辆汽车之间的距离不得小于manfen5.com 满分网公里,那么这批货物到达目的地的最短时间是     (小时). 查看答案
等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则{an}的公比为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.