先根据复合函数的单调性确定函数g(x)=x2-ax+1的单调性,进而分a>1和0<a<1两种情况讨论:①当a>1时,考虑对数函数的图象与性质得到x2-ax+1的函数值恒为正;②当0<a<1时,△=a2-4<0恒成立,x2-ax+1没有最大值,从而不能使得函数y=loga(x2-ax+1)有最小值.最后取这两种情形的并集即可.
【解析】
令g(x)=x2-ax+1(a>0,且a≠1),
①当a>1时,y=logax在R+上单调递增,
∴要使y=loga(x2-ax+1)有最小值,必须g(x)min>0,
∴△<0,
解得-2<a<2
∴1<a<2;
②当0<a<1时,g(x)=x2-ax+1没有最大值,从而不能使得函数y=loga(x2-ax+1)有最小值,不符合题意.
综上所述:1<a<2;
故答案为:1<a<2.