满分5 > 高中数学试题 >

若存在常数k和b,使得函数f(x)和g(x)在它们的公共定义域上的任意实数x分别...

若存在常数k和b,使得函数f(x)和g(x)在它们的公共定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.已知f(x)=x2,g(x)=2elnx.
(I)求F(x)=f(x)-g(x)的极值;
(II)函数f(x)和g(x)是否存在隔离直线?若存在,求出此隔离直线的方程,若不存在,请说明理由.
(1)根据求导公式,求出函数的导数,根据导数判断函数的单调性并求极值 (2)由(1)可知,函数f(x)和g(x)的图象在x=处有公共点,因此存在f(x)和g(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线方程为y-e=k(x-,即y=kx-k+e,构造函数,求出函数函数的导数,根据导数求出函数的最值 【解析】 (1)∵F(x)=f(x)-g(x)=x2-2clnx(x>0), ∴F′(x)=2x-=(2x2-2c)/x= 令F′(X)=0,得x=, 当0<x<时,F′(X)<0,X>时,F′(x)>0 故当x=时,F(x)取到最小值,最小值是0 (2)由(1)可知,函数f(x)和g(x)的图象在x=处有公共点,因此存在f(x)和g(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线方程为y-e=k(x-,即y=kx-k+e 由f(x)≥kx-k+e(x⊂R),可得x2-kx-k+e, 由f(x)≥kx-k+e(x⊂R),可得x2-kx+k-e≥0当x⊂R恒成立, 则△=k2-4k+4e=(k-2)2≤0,只有k=2,此时直线方程为:y=2x-e, 下面证明g(x)≤2x-eexx>0时恒成立 令G(x)=2x-e-g(x)=2x-e-2elnx, G′(X)=2-=(2x-2c)/x=2(x-)/x, 当x=时,G′(X)=0,当0<x<时G′(X)>0, 则当x=时,G(x)取到最小值,极小值是0,也是最小值. 所以G(x)=2x-e-g(x)≥0,则g(x)≤2x-e当x>0时恒成立. ∴函数f(x)和g(x)存在唯一的隔离直线y=2x-e
复制答案
考点分析:
相关试题推荐
在△ABC中,角A、B、C所对的边分别为a、b、c,向量manfen5.com 满分网=(1,λsinA),manfen5.com 满分网=(sinA,1+cosA).已知 manfen5.com 满分网manfen5.com 满分网
(1)若λ=2,求角A的大小;
(2)若b+c=manfen5.com 满分网a,求λ的取值范围.
查看答案
设函数manfen5.com 满分网
(1)求函数f(x)的单调区间、极值.
(2)若当x∈[a+1,a+2]时,恒有|f′(x)|≤a,试确定a的取值范围.
查看答案
工厂生产某种产品,次品率p与日产量x(万件)间的关系为P=manfen5.com 满分网(c为常数,且0<c<6),已知每生产1件合格产品盈利3元,每出现1件次品亏损1.5元.
(1)将日盈利额y(万元)表示为日产量x(万件)的函数;
(2)为使日盈利额最大,日产量应为多少万件?(注:次品率=manfen5.com 满分网
查看答案
已知向量manfen5.com 满分网=(sin(x+manfen5.com 满分网),sinx),manfen5.com 满分网=(cosx,-sinx),函数f(x)=m,(m为正实数).
(1)求函数f(x)的最小正周期及单调递减区间;
(2)将函数f(x)的图象的纵坐标保持不变,横坐标扩大到原来的两倍,然后再向右平移manfen5.com 满分网个单位得到y=g(x)的图象,试探讨:当x⊆[0,π]时,函数y=g(x)与y=1的图象的交点个数.
查看答案
设命题p:|4a-7|<1;命题q:函f(x)=x2-4x+3在[0,a]上的值域为[-1,3],若p∨q为真命题,p∧q为假命题,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.