(1)f'(x)=3ax2+2bx-a2(a>0).由得,(或由f'(-1)=0,f'(2)=0,解得a=6,b=-9.)由此能求出f(x)的解析式.
(2)由x1、x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点,知x1,x2是方程3ax2+2bx-a2=0的两根,由△=4b2+12a3>0对一切a>0,b∈R恒成立,,a>0,知x1•x2<0,由此能求出b的最大值.
(3)由x1、x2是方程f'(x)=0的两根,f'(x)=3ax2+2bx-a2(a>0),,知,,由此能求出函数g(x)在(x1,x2)内的最小值.
【解析】
(1)f'(x)=3ax2+2bx-a2(a>0).(1分)
∵x1=-1,x2=2是函数f(x)的两个极值点,
由,
得,(3分)
(或由f'(-1)=0,f'(2)=0.
∴3a-2b-a2=0,12a+4b-a2=0,
解得a=6,b=-9.)
∴f(x)=6x3-9x2-36x,(4分)
(2)∵x1、x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点,
∴f'(x1)=f'(x2)=0,
∴x1,x2是方程3ax2+2bx-a2=0的两根,
∵△=4b2+12a3,
∴△>0对一切a>0,b∈R恒成立,
而,a>0,
∴x1•x2<0,
∴|x1|+|x2|=|x1-x2|
=
=
=,(6分)
由,
得=2,
∴b2=3a2(6-a).(7分)
∵b2≥0,
∴3a2(6-a)≥0,0<a≤6.(8分)
令h(a)=3a2(6-a),
则h'(a)=-9a2+36a.
0<a<4时,h'(a)>0
∴h(a)在(0,4)内是增函数;
4<a<6时,h'(a)<0,
∴h (a)在(4,6)内是减函数.
∴a=4时,h(a)有极大值为96,
∴h(a)在(0,6]上的最大值是96,
∴b的最大值是.…(10分)
(3)∵x1、x2是方程f'(x)=0的两根,
f'(x)=3ax2+2bx-a2(a>0)
∵,
∴,(11分)
∴
∴g(x)=f'(x)-a(x-x1)
=,(12分)
对称轴为,
∵a>0,
∴,
∴.(15分)