通过研究学生的学习行为,专家发现,学生的注意力着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中),经过实验分析得知:f(t)=
.
(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?
(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,教师能否在学生达到所需的状态下讲授完这道题目?
考点分析:
相关试题推荐
已知函数
(Ⅰ)求f(x)的定义域;
(Ⅱ) 讨论f(x)的单调性;
(Ⅲ) 解不等式f(2x)>f
-1(x).
查看答案
已知函数y=1-2a-2ax+2x
2(-1≤x≤1)的最小值为f(a).
(Ⅰ)求f(a)的表达式;
(Ⅱ)当a∈[-2,0]时,求
的值域.
查看答案
已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y)且当x>0,f(x)<0.
(Ⅰ)判断f(x)的奇偶性,并证明之;
(Ⅱ)判断f(x)的单调性,并证明之.
查看答案
记函数f(x)=lg(x
2-x-2)的定义域为集合A,函数
的定义域为集合B.
(1)求A∩B和A∪B;
(2)若C={x|4x+p<0},C⊆A,求实数p的取值范围.
查看答案