满分5 > 高中数学试题 >

已知函数为偶函数. (I)求k的值; (II)若方程有且只有一个根,求实数a的取...

已知函数manfen5.com 满分网为偶函数.
(I)求k的值;
(II)若方程manfen5.com 满分网有且只有一个根,求实数a的取值范围.
(Ⅰ)根据偶函数可知f(x)=f(-x),取x=-1代入即可求出k的值; (Ⅱ)根据方程有且只有一个实根,化简可得有且只有一个实根,令t=2x>0,则转化成新方程有且只有一个正根,结合函数的图象讨论a的取值,即可求出实数a的取值范围. 【解析】 (I) 由题意得f(-x)=f(x), 即, 化简得,…(2分) 从而4(2k+1)x=1,此式在x∈R上恒成立, ∴…(6分) (II)由题意,原方程化为且a•2x-a>0 即:令2x=t>0…(8分) 函数y=(1-a)t2+at+1的图象过定点(0,1),(1,2)如图所示: 若方程(1)仅有一正根,只有如图的三种情况, 可见:a>1,即二次函数y=(1-a)t2+at+1的 开口向下都可,且该正根都大于1,满足不等式(2),…(10分) 当二次函数y=(1-a)t2+at+1的开口向上, 只能是与x轴相切的时候, 此时a<1且△=0,即也满足不等式(2) 综上:a>1或…(12分)
复制答案
考点分析:
相关试题推荐
通过研究学生的学习行为,专家发现,学生的注意力着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中),经过实验分析得知:f(t)=manfen5.com 满分网
(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?
(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,教师能否在学生达到所需的状态下讲授完这道题目?
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的定义域;
(Ⅱ) 讨论f(x)的单调性;
(Ⅲ) 解不等式f(2x)>f-1(x).
查看答案
已知函数y=1-2a-2ax+2x2(-1≤x≤1)的最小值为f(a).
(Ⅰ)求f(a)的表达式;
(Ⅱ)当a∈[-2,0]时,求manfen5.com 满分网的值域.
查看答案
已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y)且当x>0,f(x)<0.
(Ⅰ)判断f(x)的奇偶性,并证明之;
(Ⅱ)判断f(x)的单调性,并证明之.
查看答案
记函数f(x)=lg(x2-x-2)的定义域为集合A,函数manfen5.com 满分网的定义域为集合B.
(1)求A∩B和A∪B;
(2)若C={x|4x+p<0},C⊆A,求实数p的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.