满分5 > 高中数学试题 >

已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2...

已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2Sn+1,其中(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.
(1)本题由条件Sn+1+Sn-1=2Sn+1,借助项与和关系Sn-Sn-1=an,可确定数列为等差数列,进而求出数列{an}的通项公式an=n+1. (2)由an通项写出bn的通项,欲证明数列为递增数列,可借助作差法证明bn+1-bn>0即可,进行整理变形即转化为对(-1)n-1λ<2n-1(n∈N*)恒成立的证明.借此讨论N的奇数偶数两种情况就可求出λ的范围,再综合λ为非零的整数即可确定λ的具体取值. 【解析】 (1)由已知,(Sn+1-Sn)-(Sn-Sn-1)=1(n≥2,n∈N*), 即an+1-an=1(n≥2,n∈N*),且a2-a1=1. ∴数列{an}是以a1=2为首项,公差为1的等差数列. ∴an=n+1. (2)∵an=n+1, ∴bn=4n+(-1)n-1λ•2n+1,要使bn+1>bn恒成立, ∴bn+1-bn=4n+1-4n+(-1)nλ•2n+2-(-1)n-1λ•2n+1>0恒成立, ∴3•4n-3λ•(-1)n-12n+1>0恒成立, ∴(-1)n-1λ<2n-1恒成立. (ⅰ)当n为奇数时,即λ<2n-1恒成立, 当且仅当n=1时,2n-1有最小值为1, ∴λ<1. (ⅱ)当n为偶数时,即λ>-2n-1恒成立, 当且仅当n=2时,-2n-1有最大值-2, ∴λ>-2. 即-2<λ<1,又λ为非零整数,则λ=-1. 综上所述,存在λ=-1,使得对任意n∈N*,都有bn+1>bn.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=-manfen5.com 满分网+2ax2-3a2x+1,0<a<1.
(Ⅰ)求函数f(x)的极大值;
(Ⅱ)若x∈[1-a,1+a]时,恒有-a≤f′(x)≤a成立(其中f′(x)是函数f(x)的导函数),试确定实数a的取值范围.
查看答案
已知曲线E上任意一点P到两个定点manfen5.com 满分网manfen5.com 满分网的距离之和为4,
(1)求曲线E的方程;
(2)设过(0,-2)的直线l与曲线E交于C、D两点,且manfen5.com 满分网(O为坐标原点),求直线l的方程.
查看答案
如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AD=2,E、F、G分别为PC、PD、BC的中点.
(I)求证:PA∥平面EFG;
(II)求三棱锥P-EFG的体积.

manfen5.com 满分网 查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=2、c=3,cosB=manfen5.com 满分网.   
(1)求b的值;    
(2)求sinC的值.
查看答案
已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.
(1)求甲射击一次,命中不足8环的概率;(2)求甲射击一次,至少命中7环的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.