(1)由题意可得,3-2x>0,解不等式可求函数f(x)的定义域
(2)假设存在满足条件的a,由a>0且a≠1可知函数t=3-ax为单调递减的函数,则由复合函数的单调性可知,y=logat在定义域上单调递增,且t=3-ax>0在[1,2]上恒成立,f(1)=1,从而可求a的范围
【解析】
(1)当a=2时,f(x)=log2(3-2x)
∴3-2x>0
解得
即函数f(x)的定义域(-)
(2)假设存在满足条件的a,
∵a>0且a≠1,令t=3-ax,则t=3-ax为单调递减的函数
由复合函数的单调性可知,y=logat在定义域上单调递增,且t=3-ax>0在[1,2]上恒成立
∴a>1且由题可得f(1)=1,3-2a>0,
∴loga(3-a)=1,2a<3
∴3-a=a,且a
故a的值不存在